Effect of Methylobacterium radiotolerans ED5-9 with Capability of Producing Indole-3-Acetic Acid (IAA) and 1-Aminocyclopropane-1-Carboxylic Acid Deaminase on the Growth and Development of Murdannia loriformis (Hassk.) Rolla Rao & Kammathy under In Vitro Condition

##plugins.themes.bootstrap3.article.main##

Thanawut Prombunchachai Nareeluk Nakaew Apichat Chidburee Siripun Sarin

Abstract

This study aimed to evaluate the production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme from endophytic Methylobacterium radiotolerans ED5-9, and to investigate the effects of M. radiotolerans ED5-9 on Murdannia loriformis, under tissue culture condition. M. radiotolerans ED5-9 was isolated from leaves of M. loriformis and cultured in vitro. It produced indole-3-acetic acid (IAA) with a concentration of 3.36 ± 0.20 µg/ml after incubation for 60 hr. Activity of ACC deaminase enzyme was observed at 365.05 ± 90.51 nmol of a-ketobutyrate/mg of protein/h. To test the effects of inoculation, the experiment was carried on by immersion of the explants of M. loriformis into M. radiotolerans ED5-9 suspension for 1, 3 and 5 min, and subsequently cultured on the MS medium in which 2 mg/l of IAA substance was used as the control. The results showed that duration time of the immersed explants in M. radiotolerans ED5-9 suspension for 5 min had the highest average number of shoots (6.00 ± 1.00 shoots per explants), root length (0.71 ± 0.26 cm) and dry weight (46.00 ± 5.40 mg). However, the above results of growth were similar to the growth of M. loriformis explants in the control. The results indicated the possible utilizing of M. radiotolerans ED5-9 can produce ACC deaminase enzyme and IAA to enhance growth and development of the M. loriformis explants under the in vitro condition.

References

Ali, B., & Hasnain, S. (2007). Potential of bacteria indoleacetic acid to induce adventitious shoots in plant tissue culture. Letters in Applied Microbiology, 45(2), 128-133.

Arroo, R. R. J., Develi, A., Meijers, H., Van de Westerlo, E., Kemp, A. K., Croes, A. F., & Wullems, G. J. (1995). Effect of exogenous auxin on root morphology and secondary metabolism in Tagetes patula hairy root cultures. Physiologia Plantarum, 93(2), 233-240.

Cervantes, S. E., Graham, E. A., & Andrade, J. L. (2005). Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest. Plant Ecology, 179(1), 107-118.

Chinnadurai, C., Balachandar, D., & Sundaram, S. P. (2009). Characterization of 1 aminocyclopropane-1-carboxylate deaminase producing methylobacteria from phyllosphere of rice and their role in ethylene regulation. Word Journal of Microbiology and Biotechnology, 25(8), 1403-1411.

Debnath, M., Malik, C. P., & Bisen, P. S. (2006). Micropropagation: a tool for the production of high quality plant-based medicines. Current Pharmaceutical Biotechnology, 7(1), 33-49.

Devi, R. P., Sundaram, S. P., & Poorniammal, R. (2010). Effect of facultative methyltrophs on tissue culturing of rice. Asian Journal of Bio Science, 4(2), 207-209.

Dileepkumar, B. S., & Dube, H. C. (1992). Seed bacterization with fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biology and Biochemistry, 24(6), 539-542.

Doronina, N. V., Ivanova, E. G., & Trotsenko, Y. A. (2002). New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Microbiology, 71(1), 130-132.

Glick, B. R., Penrose, D. M., & Li, J. (1998). Model for the lowering of plant ethylene concentration by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63-68.

Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J., & McConkey, B. (2007). Promotion of plant growth by bacterial ACC deaminase. Critical Review in Plant Sciences, 26(5-6), 227-242.

Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793-796.

Green, P. N. (2006). Methylobacterium. In M. Dworkin, S. Falkow, E. Rosenberg, K. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes Vol.5 (pp. 257-265). Singapore: Springer Science+Business Media LLC.

Holland, M. A. (1997). Occam’s razor applied to hormonology: are cytokinins produced by plants? Plant Physiology, 115(3), 865-868.

Holland, M. A., & Polacco, J. C. (1994). PPFMs and other covert contaminants: is there more to plant physiological than just plant? Annual Review of Plant Physiology and Plant Molecular Biology, 45(1), 197-209.

Hsh, C. Y. (2006). Antioxidant activity of extract from Polygonum aviculare L. Biological Research, 39(2), 281-288.

Ivanova, E. G., Doronina, N. V., & Trotsenko, Y. A. (2001). Aerobic methylobacteria are capable of synthesizing auxins. Microbiology, 70(4), 452-458.

Jiratchariyakul, W., Okabe, H., Moongkarndi, P., & Frahm, A. W. (1998). Cytotoxic Glycosphingolipid from Murdannia loriformis (Hassk.) Rolla Rao & Kam. Thai Journal of Phytopharmacy, 5(1), 10-20.

Jiratchariyakul, W., Vongsakul, M., Sunthornsuk, L., Moongkarndi, P., Narintorn, A. Somanabandhu, A., Okabe, H., & Frahm, A. W. (2006). Immunomodulatory Effect and Quantitation of Cytotoxic Glycosphingolipid from Murdannia loriformis. Journal of Natural Medicines, 60(3), 210-216.

Kalyaeva, M. A., Ivanova, E. G., Doronina, N. V., Zakharchenko, N. S., Trotsenko, Y. A., & Buryanov, Y. I. (2003). The Effect of aerobic methylotrophic bacteria on the In vitro morphogenesis of soft wheat (Triticum aestivum). Russian Journal of Plant Physiology, 50(3), 313-317.

Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In Wrolstad, R. E., Acree, T. E., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., Shoemaker, C. F., Smith, D. M., & Sporns, P. (Eds.), Current Protocols in Food Analytical Chemistry (pp. F4.3.1-F4.3.8). N.P.: John Wiley and Sons.

Madhaiyan, M., Poonguzhali, S., & Sa, T. (2007). Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxin and ACC regulation of ethylene in Canola (Brassica campestris). Planta, 226(4), 867-876.

Madhaiyan, M., Poonguzhali, S., Ryu, J., & Sa, T. (2006). Regulation of ethylene levels in Canola (Brassica campestris) by 1-Aminocyclopropane 1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta, 224(2), 268–278.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15(3), 473-497.

Neumann, K. H., Kumar, A., & Imani, J. (2009). Plant cell and tissue culture- A tool in biotechnology: basics and application. Berlin, Heidelberg, Germany: Springer-Verlag.

Penrose, D. M., & Glick, B. R. (2001). Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Canadian Journal of Microbiology, 47(4), 368-372.

Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10-15.

Pongsathorn, K., Duangporn, P., Sireethon, K., & Pornchanok, C. (2012). Determination of antioxidant property from some medicinal plant extracts from Thailand. African Journal of Biotechnology, 11(45), 10322-10327.

Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., & Onckelen, H. V. (1993). Azosipirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophandependent pathway. Molecular Plant-Microbe Interacts, 6(5), 609-915.

Rao, S. R., & Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101-153.

Russo, A., Vettori, L., Felici, C., Fiaschi, G., Morini, S., & Toffanin, A. (2008). Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. Clone Mr.S2/5 plants. Journal of Biotechnology, 134(3-4), 312-319.

Sarin, S., Prombunchachai, T., Nakaew, N., & Chidburee, A. (2013) Isolation of indole acetic acid producing pink pigmented facultative methylotrophs (PPFMs) from Murdannia loriformis (Hassk.) R. Rao & Kammathy. Naresuan University Journal, 21(2), 14-24.

Shirokikh, I. G., Shupletsova, O. N., & Shirokikh, A. A. (2007) Assessment of the effect of methylotrophic bacteria on plants In vitro. Russian Agricultural Sciences, 33(5), 308–310.

Keywords
Methylobacterium radiotolerans, Murdannia loriformis, indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, in vitro
Section
Research Articles

##plugins.themes.bootstrap3.article.details##

How to Cite
PROMBUNCHACHAI, Thanawut et al. Effect of Methylobacterium radiotolerans ED5-9 with Capability of Producing Indole-3-Acetic Acid (IAA) and 1-Aminocyclopropane-1-Carboxylic Acid Deaminase on the Growth and Development of Murdannia loriformis (Hassk.) Rolla Rao & Kammathy under In Vitro Condition. Naresuan University Journal: Science and Technology (NUJST), [S.l.], v. 25, n. 2, p. 21-31, apr. 2017. ISSN 2539-553X. Available at: <https://www.journal.nu.ac.th/NUJST/article/view/1771>. Date accessed: 19 apr. 2024.