PLA Improvement Using Nanocomposite and Plasma Modification


Nikom Rattanarojanakul Chote Nuangnu Wichaladda Aunsaart Tanapat Tirawoot Somyos Srikhongrak


        This work studied the effects of Oxygen (O2), Nitrogen (N2) and Air plasmas on the surface modification of Polylactic acid (PLA) films. PLA films with 0.01 mm thickness were prepared from pure PLA material, while the PLA nanocomposite was prepared by mixing pure PLA with 5.00 wt.% of Organoclay (Cloisit® 30B). The plasma discharge was operated by -800 VDC of applied voltage at 0.1 mbar. The samples were placed on the substrate inside the plasma reactor and exposed to the plasma gases for 10, 15 and 20 min. The results showed that the hydrophobic property of pure PLA film can be increased by O2 exposure for 10 min and air plasma exposure for 20 min. Whilst the hydrophilic properties of PLA nanocomposite film were elevated when exposed for 20 min to the air and N2 plasma. In addition, PLA nanocomposite film has slightly higher levels of hydrophilic properties when compared to pure PLA film as evidenced by contact angle measurement. This result implies that low-temperature plasma discharges can successfully improve the surface property of PLA film in a short operating time.

Keywords: Low-temperature plasmas, PLA modification, Nanocomposite, Plasma modifications, Surface modifications


Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., … Kenny, J. M. (2013). Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 38(10–11), 1720-1747.
Bogaerts, A., Neyts, E., Gijbels, R., & van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609-658.
Borcia, I.-L. P. a. G. (2013). Surface modification and stability of polymers treated by atmospheric-pressure helium plasma. Journal of Advanced Research in Physics, 4(1), 011305.
Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9(4), 441.
Dadbin, S., Naimian, F., & Akhavan, A. (2011). Poly(lactic acid)/layered silicate nanocomposite films: Morphology, mechanical properties, and effects of γ-radiation. Journal of Applied Polymer Science, 122(1), 142-149.
Da Ponte, G., Sardella, E., Fanelli, F., d’Agostino, R., Favia, P. (2011). Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications. The European Physical Journal Applied Physics, 56(2), 4.
De Geyter, N., Morent, R., Desmet, T., Trentesaux, M., Gengembre, L., Dubruel, P., . . . Payen, E. (2010). Plasma modification of polylactic acid in a medium pressure DBD. Surface and Coatings Technology, 204(20), 3272-3279.
Eliezer, S. E. a. Y. (2001). The fourth state of matter: An introduction to plasma science (2rd ed.). Bristol and Philadelphia: Institute of Physics Publishing.
Fu, S., & Zhang, P. (2019). Surface modification of polylactic acid (PLA) and polyglycolic acid (PGA) monofilaments via the cold plasma method for acupoint catgut-embedding therapy applications.Textile Research Journal, 89(18), 0040517518824841.
Junkar, I., Cvelbar, U., & Lehocký, M. (2011). Plasma treatment of biomedical materials. Materiali in Tehnologije, 45, 221-226.
Kaew-On, C., Chittrakarn, T., Ruangdit, S., Yuenyao, C., & Tirawanichakul, Y. (2018). Modification of Asymmetric Polysulfone Membrane Surfaces using Mixed Ar/O2 Plasma Technique. Walailak Journal of Science and Technology, 16(6), 423-431.
Oehr, C. (2003). Plasma surface modification of polymers for biomedical use. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208, 40-47. http:dx.doi.
Othman, S., Edwal, S., Risyon, N., Kadir, R., & Talib, R. (2017). Water sorption and water permeability properties of edible film made from potato peel waste. Food Science and Technology (Campinas), 37, 13.
Rhim, J.-W., Hong, S.-I., & Ha, C.-S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Science and Technology, 42(2), 612-617. http:dx.doi.
Richter, C., Reinhardt, M., Giselbrecht, S., Leisen, D., Trouillet, V., Truckenmüller, R., . . . Welle, A. (2010). Spatially controlled cell adhesion on three-dimensional substrates. Biomedical microdevices, 12, 787-795.
Xu, W., Rajan, K., Chen, X., & Sarkar, D. (2019). Facile electrodeposition of superhydrophobic aluminum stearate thin films on copper substrates for active corrosion protection. Surface and Coatings Technology, 364, 406-415.
Yuenyao, C., Chittrakarn, T., Tirawanichakul, Y., & Nakajima, H. (2017). Low Pressure DC-Plasma System for the Modification of Polymeric Membrane Surfaces. Sains Malaysiana, 46, 783-793. http:dx.doi.
Yuenyao, C., Chittrakarn, T., Tirawanichakul, Y., & Sirijarukul, S. (2016). Surface Modification of Asymmetric Polysulfone/Polyethylene Glycol Membranes by DC Ar-Glow Discharge Plasma. International Journal of Polymer Science, 2016, 4759150.

Research Articles


How to Cite
RATTANAROJANAKUL, Nikom et al. PLA Improvement Using Nanocomposite and Plasma Modification. Naresuan University Journal: Science and Technology (NUJST), [S.l.], v. 31, n. 1, p. 50-57, dec. 2022. ISSN 2539-553X. Available at: <>. Date accessed: 28 mar. 2023. doi: