Finite Element Simulation of Moisture Content Changes of Peeled Banana (Musa x paradisiaca L.) during Drying


Prasan Pankaew Serm Janjai Wanich Nilnont Bilash Kanti Bala


        This paper presents finite element simulation of drying of peeled banana. A two-dimensional finite element model was developed for simulation of moisture content changes during drying of peeled banana. The finite element simulation model was programmed in Compaq Visual FORTRAN version 6.5. Classical models for moisture diffusivity, sorption isotherm and volumetric shrinkage of peeled banana were experimentally determined and used in the finite element simulation. The finite element model prediction was compared with the experimental data. The agreement between the simulated moisture content changes and the experimental data was in reasonable agreement with a discrepancy in root mean square error being in the range of 2.2-14.6%. Moisture content change profiles inside peeled banana during drying were predicted and these profiles give a good picture of the moisture movement inside peeled banana during drying.

Keywords: Drying, Peeled banana, Finite element, Moisture diffusion


Alagbe, E. E., Daniel, E. O., & Oyeniyi, E. A. (2020). Dataset on the effect of different pretreatment on the proximate analysis, microbial and sensory evaluation of dried banana during its storage. Data in Brief, 31, 1-5.
Babbar, V. K., Underhill, P. R., Stott, C., & Krause, T. W. (2014). Finite element modeling of second layer crack detection in aircraft bolt holes with ferrous fasteners present. NDT & E International, 65, 64-71.
Baini, R., & Langrish, T. A. G. (2007). Choosing an appropriate drying model for intermittent and continuous drying of bananas. Journal of Food Engineering, 9, 330-343.
Baini, R., & Langrish, T. A. G. (2008). An assessment of the mechanisms for diffusion in the drying of banana. Journal of Food Engineering, 85, 201-214.
Bala, B. K. (2017). Drying and storage of cereal grains. New York: John Wiley & Sons.
Bala, B., & Woods, J. (1995). Optimization of natural-convection, solar drying systems. Energy, 20, 285-294.
Cengel, Y. A., Turner, R. H., Cimbala, J. M., & Kanoglu, M. (2008). Fundamentals of thermal-fluid sciences. New York : McGraw-Hill.
Champion, W. M., & Halsey, G. D. (1953). Physical adsorption on uniform surfaces. The Journal of Physical Chemistry, 57, 646-648.
Chowdhury, N. M., Wang, J., Chiu, W. K., & Chang, P. (2016). Experimental and finite element studies of thin bonded and hybrid carbon fibre double lap joints used in aircraft structures. Composites Part B: Engineering, 85, 233-242.
Chung, D. S., & Pfost, H. B. (1967). Adsorption and desorption of water vapor by cereal grains and their products Part II: Development of the general isotherm equation. Transactions of the ASAE, 10, 552-0555.
da Silva, W. P., e Silva, C. M., & Gomes, J. P. (2013). Drying description of cylindrical pieces of bananas in different temperatures using diffusion models. Journal of Food Engineering, 117, 417-424.
Day, D., & Nelson, G. (1965). Desorption isotherms for wheat. Transactions of the ASAE, 8, 293-0297.
Doiebelin, E. (1976). Measurement Systems. New York: McGraw-Hill Book Company.
Gu, L., Kasavajhala, A. R. M., & Zhao, S. (2011). Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs. Composites Part B: Engineering, 42, 505-510.
Haghighi, K., & Segerlind, L. (1988). Modeling simultaneous heat and mass transfer in an isotropic sphere-a finite element approach. Transactions of the ASAE, 31, 629-637.
Holman, J. P. (1978). Experimental method for engineering. New York: McGraw-Hill Book Company.
Irudayaraj, J., Haghighi, K., & Stroshine, R. (1992). Finite element analysis of drying with application to cereal grains. Journal of Agricultural Engineering Research, 53, 209-229.
Janjai, S., Bala, B. K., Tohsing, K., Mahayothee, B., Haewsungcharern, M., Mühlbauer, W., & Müller, J. (2006). Equilibrium moisture content and heat of sorption of longan (Dimocarpus longan Lour.). Drying Technology, 24, 1691-1696.
Janjai, S., Chaichoet, C., & Intawee, P. (2005). Performance of PV-ventilated greenhouse dryer for drying bananas. Asian Journal on Energy and Environment, 6, 133-139.
Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Bala, B. K., Nagle, M., & Müller, J. (2009). Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Solar Energy, 83, 1550-1565.
Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Haewsungcharern, M., Bala, B. K., & Müller, J. (2008). Finite element simulation of drying of mango. Biosystems Engineering, 99, 523-531.
Janjai, S., Mahayothee, B., Lamlert, N., Bala, B.K., Precoppe, M., Nagle, M., & Müller, J. (2010). Diffusivity, shrinkage and simulated drying of litchi fruit (Litchi Chinensis Sonn.). Journal of Food Engineering, 96, 214-221.
Jannot, Y., Talla, A., Nganhou, J., & Puiggali, J. (2004). Modeling of banana convective drying by the drying characteristic curve (DCC) method. Drying Technology, 22, 1949-1968.
Kadam, D. M., & Dhingra, D. (2011). Mass transfer kinetics of banana slices during osmo-convective drying. Journal of Food Process Engineering, 34, 511–532.
Kaleemullah, S., & Kailappan, R. (2004). Moisture sorption isotherms of red chillies. Biosystems Engineering, 88, 95-104.
Kapidžić, Z., Nilsson, L., & Ansell, H. (2014). Finite element modeling of mechanically fastened composite-aluminum joints in aircraft structures. Composite Structures, 109, 198-210.
Karaağaçlı, T., Yıldız, E. N., & Nevzat Özgüven, H. (2012). A new method to determine dynamically equivalent finite element models of aircraft structures from modal test data. Mechanical Systems and Signal Processing, 31, 94-108.
Kaye, R., & Heller, M. (2006). Finite element-based three-dimensional stress analysis of composite bonded repairs to metallic aircraft structure. International Journal of Adhesion and Adhesives, 26, 261-273.
Kiburi, F. G., Kanali, C. L., Kituu, G. M., Ajwang, P. O., & Ronoh, E. K. (2020). Performance evaluation and economic feasibility of a solar-biomass hybrid greenhouse dryer for drying Banana slices. Renewable Energy Focus, 34, 60-68.
Montanuci, F. D., Perussello, C. A., de Matos Jorge, L. M., & Jorge, R. M. M. (2014). Experimental analysis and finite element simulation of the hydration process of barley grains. Journal of Food Engineering, 131, 44-49.
Nilnont, W., Thepa, S., Janjai, S., Kasayapanand, N., Thamrongmas, C., & Bala, B. K. (2012). Finite element simulation for coffee (Coffea arabica) drying. Food and Bioproducts Processing, 90, 341-350.
Oswin, C. (1946). The kinetics of package life. III. The isotherm. Journal of the Society of Chemical Industry, 65, 419-421.
Pankaew, P., Janjai, S., Nilnont, W., Phusampao, C., & Bala, B. K. (2016). Moisture desorption isotherm, diffusivity and finite element simulation of drying of macadamia nut (Macadamia integrifolia). Food and Bioproducts Processing, 100, 16-24.
Patil, M. K., & Subbaraj, K. (1988). Finite element analysis of two dimensional steady flow in model arterial bifurcation. Journal of Biomechanics, 21, 219-233.
Prachayawarakorn, S., Tia, W., Plyto, N., & Soponronnarit, S. (2008). Drying kinetics and quality attributes of low-fat banana slices dried at high temperature. Journal of Food Engineering, 85, 509-517.
Prasad, V., Joy, A., Venkatachalam, G., Narayanan, S., & Rajakumar, S. (2014). Finite Element analysis of jute and banana fibre reinforced hybrid polymer matrix composite and optimization of design parameters using ANOVA technique. Procedia Engineering, 97, 1116-1125.
Ranjan, R., Irudayaraj, J., Reddy, J. N., & Mujumdar, A. S. (2004). Finite-dlement simulation and validation of stepwise drying of bananas. Numerical Heat Transfer, Part A: Applications, 45, 997-1012.
Rodríguez-Sánchez, A. E., Ledesma-Orozco, E., & Ledesma, S. (2020). Part distortion optimization of aluminum-based aircraft structures using finite element modeling and artificial neural networks. CIRP Journal of Manufacturing Science and Technology, 31, 595-606.
Saha, B., Bucknall, M., Arcot, J., & Driscoll, R. (2018). Derivation of two layer drying model with shrinkage and analysis of volatile depletion during drying of banana. Journal of Food Engineering, 226, 42-52.
Schenck, H. V. N., & Hawks, R. J. (1979). Theories of engineering experimentation. New York: McGraw-Hill Book Company.
Schirmer, P., Janjai, S., Esper, A., Smitabhindu, R., & Mühlbauer, W. (1996). Experimental investigation of the performance of the solar tunnel dryer for drying bananas. Renewable Energy, 7, 119-129.
Segerlind, L. J. (1984). Applied finite element analysis. New York: Wiley.
Smitabhindu, R., Janjai, S., & Chankong, V. (2008). Optimization of a solar-assisted drying system for drying bananas. Renewable Energy, 33, 1523-1531.
Souraki, B. A., & Mowla, D. (2008). Experimental and theoretical investigation of drying behaviour of garlic in an inert medium fluidized bed assisted by microwave. Journal of Food Engineering, 88, 438-449.
Takougnadi, E., Boroze, T. E. T., & Azouma, O. Y. (2020). Effects of drying conditions on energy consumption and the nutritional and organoleptic quality of dried bananas. Journal of Food Engineering, 268, 1-9.
Tunckal, C., & Doymaz, İ. (2020). Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy, 150, 918-923.
Vagenas, G., & Marinos-Kouris, D. (1991). Finite element simulation of drying of agricultural products with volumetric changes. Applied Mathematical Modelling, 15, 475-482.
Von Loesecke, H. W. (1950). Bananas; chemistry, physiology, technology (2nd ed.). New York: Interscience Publishers.
Zhao, W., Gupta, A., Regan, C. D., Miglani, J., Kapania, R. K., & Seiler, P. J. (2019). Component data assisted finite element model updating of composite flying-wing aircraft using multi-level optimization. Aerospace Science and Technology, 95, 105486.

Research Articles


How to Cite
PANKAEW, Prasan et al. Finite Element Simulation of Moisture Content Changes of Peeled Banana (Musa x paradisiaca L.) during Drying. Naresuan University Journal: Science and Technology (NUJST), [S.l.], v. 29, n. 4, p. 97-111, may 2021. ISSN 2539-553X. Available at: <>. Date accessed: 18 jan. 2022. doi: