On bi-bases of ordered Γ -semigroups

Wichayaporn Jantanan, Monthean Latthi and Jiriya Puifai*

Department of Mathematics Faculty of Science Buriram Rajabhat University Buriram 31000 * Corresponding author. E-mail address: wichayaporn.jan@bru.ac.th; 600112210028@bru.ac.th Received: 16 August 2020; Revised: 9 August 2021; Accepted: 16 August 2021; Available online: 28 October 2021

Abstract

In this paper, based on the results of ordered bi-ideals generated by a non-empty subset of an ordered Γ -semigroups M, we introduce the concept of bi-base of M. Using the quasi-order on M defined by the principal ordered bi-ideals of M, we characterize when a non-empty subset of M is a bi-base of M. The results obtained extending the results on Γ -semigroup.

Keywords: ordered Γ -Semigroup, bi- Γ -ideal, bi-base, quasi-order

Introduction

The notion of two-sided bases of a semigroup was introduced by Fabrici (1975). The results (Fabrici, 1975). Have extended to ordered semigroups by Changpas and Summaprab (Changpas&Summaprab, 2014). In 2017 Kummoon and Changpas studied the notion of bi-bases of a semigroup (Kummoon & Changpas, 2017) and bi-bases of Γ -semigroup (Kummoon & Changpas, 2017).

This is an algebraic structure, generalized the concept of semigroups, called a Γ - semigroup introduced by Sen (1981). The notion of a Γ - semigroup was defined as a generalization of a semigroup by the following definition (Sen & Saha, 1986; Saha, 1987; Saha, 1998).

Definition 1.1. Let $M = \{x, y, z, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be any two non-empty sets. Then M is said to be a Γ -semigroup if it satisfies the two following conditions:

(1) $x \alpha y \in M$ for all $x, y \in M$ and $\alpha \in \Gamma$;

(2) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Let M be a Γ -semigroup. If A and B are two subsets of M, we shall denote the

 $A\Gamma B := \{a\gamma b | a \in A, b \in B \text{ and } \gamma \in \Gamma\}$. We also write $a\Gamma B, A\Gamma b$ and $a\Gamma b$ for $\{a\}\Gamma B, A\Gamma\{b\}$ and $\{a\}\Gamma\{b\}$, respectively.

Definition 1.2. Let M be a Γ - semigroup and a nonempty subset A of M is called a sub- Γ - semigroup of M if $A\Gamma A \subseteq T$.

The main purpose of this paper is to introduce the concept of bi-bases of an ordered Γ - semigroup and extend some of bi-bases of Γ - semigroup results . Ordered Γ - semigroup was studied by Kehayopula (Kehayopulu, 2010). In 2009, Chinram and Tinpun (2009) studied some properties of bi-ideals and minimal bi-ideals in ordered Γ - semigroups.

Definition 1.3. (M, Γ, \leq) is called an ordered Γ - semigroup if (M, Γ) is a Γ - semigroup and (M, \leq) is a partially ordered set such that $a \leq b \Rightarrow a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$ for all $a, b, c \in M$ and $\gamma \in \Gamma$.

if $(M; \leq)$ is an ordered Γ - semigroup, and K is a sub- Γ - semigroup of M, then $(K; \leq)$ is an ordered Γ -semigroup. For an element a of ordered Γ -semigroup M, define $(a] \coloneqq \{t \in M | t \leq a\}$ and

for a subset H of M, define $(H] = \bigcup_{h \in H} (h]$, that is, $(H] = \{t \in M \mid t \leq h \text{ for subset } h \in H\}$, and

 $H \cup a \coloneqq H \cup \{a\}$. We observe here that

- $1.H \subseteq (H] = (H].$
- 2. For any subsets A and B of M with $A \subseteq B$, we have $(A] \subseteq (B]$.
- 3. For any subsets A and B of M, we have $(A \cup B] = (A] \cup (B]$.
- 4. For any subsets A and B of M, we have $(A \cap B] \subseteq (A] \cap (B]$.
- 5. For any subsets a and b of M with $a \leq b$, we have $(a\Gamma M] \subseteq (b\Gamma M]$ and $(M\Gamma a] \subseteq (M\Gamma b]$.

Definition 1.4. Let (M, Γ, \leq) be an ordered Γ - semigroup. A nonempty subset A of M is called a biideal of M if the following hold.

- $1.B\Gamma M\Gamma B \subseteq B$
- 2. If $x \in B$, and $y \in M$, such that $y \leq x$, then $y \in B$.

In 2009, lampan give some results which are necessary in ordered bi-ideals of M (lampan, 2009).

Lemma 1.5. For any nonempty subset A of a ordered Γ - semigroup M, $(A \cup A\Gamma A \cup A\Gamma M\Gamma A]$ is the smallest ordered bi-ideal of M containing A. Furthermore, for any $a \in M$,

$$(a)_{b} = (a \cup a\Gamma a \cup a\Gamma M\Gamma a].$$

Lemma 1.6. Let $\{B_i | i \in I\}$ be a family of ordered bi-ideals of M Then $\bigcap_{i \in I} B_i$ is an ordered bi-ideal of M if $\bigcap_{i \in I} B_i \neq \emptyset$.

Main Results

We begin this section with the following definition of bi-bases of an ordered Γ -semigroup. **Definition 2.1.**Let M be an ordered Γ -semigroup. A subset B of called a bi-base of M if it satisfies the two following conditions:

1. $M = (B)_{\mu};$

2. if A is a subset of B such that $M = (A)_{h}$, then A = B.

Example 2.2 Let $M = \{a, b, c, d\}$ and $\Gamma = \{\alpha, \beta\}$ where α, β is defined on M with the following Cayley tables:

α	a	b	c	d	β	a	b	с	d
a	a	a	a	a	a	a	a	a	a
b	a	b	c	d	b	a	b	c	d
c	a	c	c	с	с	a	c	c	c
d	a	с	с	с	d	a	b	с	d
$\leq = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (d, c), (d, d)\}.$									

In (Chinnadurai & Arulmozhi, 2018), we have shown that (M, Γ, \leq) is an ordered Γ -semigroup. Consider $B_1' = \{b\}$ and $B_2' = \{d\}$ is not a bi-base of M. But $B_1 = \{b, d\}$ is a bi-base of M. Lemme 2.3 Let B be a bi-base of an ordered Γ -semigroup M. Let $a, b \in B$. If $a \in (b\Gamma b \cup b\Gamma M\Gamma b]$, then a = b.

Proof. Assume that $a \in (b\Gamma b \cup b\Gamma M\Gamma b]$, and suppose that $a \neq b$. Let $A := B \setminus \{a\}$. It is clearly seen that $A \subset B$. Since $a \neq b$, $b \in A$, we will show that $(A)_b = M$. Clearly, $(A)_b \subseteq M$. Next, we show that $M \subseteq (A)_b$. Let $x \in M$. By hypothesis, we have $(B)_b = M$ and so $x \in (B \cup B\Gamma B \cup B\Gamma M\Gamma B]$. Since $x \in (B \cup B\Gamma B \cup B\Gamma M\Gamma B]$, we have $x \leq y$ for some $y \in B \cup B\Gamma B \cup B\Gamma M\Gamma B$. We can consider the three following cases.

Case 1: $y \in B$. There two subcases to consider.

Subcase 1.1: $y \neq a$. Then $y \in B \setminus \{a\} = A \subseteq (A)_{b}$.

Subcase 1.2: y = a. By assumption, we have

$$y = a \in (b\Gamma b \cup b\Gamma M\Gamma b] \subseteq (A\Gamma A \cup A\Gamma M\Gamma A] \subseteq (A)_{b}.$$

Case 2: $y \in B\Gamma B$. Then $y = b_1 \gamma b_2$ for some b_1 , $b_2 \in B$ and $\gamma \in \Gamma$. There are four subcases to consider.

Subcase 2.1: $b_1 = a$ and $b_2 = a$. By assumption, so we have the following:

 $y = b_{\!\!1} \gamma b_{\!\!2} \in (b \Gamma b \cup b \Gamma M \Gamma b] \Gamma (b \Gamma b \cup b \Gamma M \Gamma b]$ $\subseteq ((b\Gamma b \cup b\Gamma M\Gamma b)\Gamma(b\Gamma b \cup b\Gamma M\Gamma b)]$ $= (b\Gamma b\Gamma b\Gamma b \cup b\Gamma b\Gamma b\Gamma b\Gamma M\Gamma b \cup b\Gamma M\Gamma b\Gamma b\Gamma b \cup b\Gamma M\Gamma b\Gamma b\Gamma b\Gamma M\Gamma b]$ $\subseteq (A\Gamma A\Gamma A\Gamma A \cup A\Gamma A\Gamma A\Gamma M\Gamma A \cup A\Gamma M\Gamma A\Gamma A\Gamma A$ $\cup A\Gamma M\Gamma A\Gamma A\Gamma M\Gamma A]$ $\subseteq (A\Gamma M\Gamma A]$ $\subset (A)_i$. Subcase 2.2: $b_1 \neq a$ and $b_2 = a$. By assumption and $A = B \setminus \{a\}$, we have $y = b_1 \gamma b_2 \in (B \setminus \{a\}) \Gamma(b \Gamma b \cup b \Gamma M \Gamma b]$ $\subseteq ((B \setminus \{a\})\Gamma(b\Gamma b \cup b\Gamma M\Gamma b)]$ $= ((B \setminus \{a\})\Gamma b\Gamma b \cup (B \setminus \{a\})\Gamma b\Gamma M\Gamma b]$ $\subseteq (A\Gamma A\Gamma A \cup A\Gamma A\Gamma M\Gamma A]$ $\subset (A\Gamma M\Gamma A]$ $\subseteq (A)_{\iota}$. Subcase 2.3: $b_1 = a$ and $b_2 \neq a$. By assumption and $A = B \setminus \{a\}$, we have $y = b_1 \gamma b_2 \in (b \Gamma b \cup b \Gamma M \Gamma b] \Gamma(B \setminus \{a\})$ $\subseteq ((b\Gamma b \cup b\Gamma M\Gamma b)\Gamma(B \setminus \{a\})]$

$$= (b\Gamma b\Gamma (B \setminus \{a\}) \cup b\Gamma M\Gamma b\Gamma (B \setminus \{a\})]$$

- $\subseteq (A\Gamma A\Gamma A \cup A\Gamma M\Gamma A\Gamma A]$
- $\subseteq (A\Gamma M\Gamma A]$

$$\subseteq (A)_{h}.$$

Subcase 2.4: $b_1 \neq a$ and $b_2 \neq a$, from $A = B \setminus \{a\}$. Then $y = b_1 \gamma b_2 \in (B \setminus \{a\}) \Gamma(B \setminus \{a\}) = A \Gamma A \subseteq (A)_b$.

$$\begin{aligned} & \mathbf{Subcase} \ \mathbf{3.1!} b_3 = a \ \text{ and } b_4 = a \ \mathbf{.} \ \mathbf{By} \ \text{assumption, we have} \\ & y = b_3 \gamma_1 m \gamma_2 b_4 \in (b\Gamma b \cup b\Gamma M\Gamma b] \Gamma M\Gamma (b\Gamma b \cup b\Gamma M\Gamma b) \\ & \subseteq ((b\Gamma b \cup b\Gamma M\Gamma b)\Gamma M\Gamma (b\Gamma b \cup b\Gamma M\Gamma b) \\ & = (b\Gamma b\Gamma M\Gamma b\Gamma b\Gamma b \cup b\Gamma b\Gamma M\Gamma b\Gamma M\Gamma b \cup b\Gamma M\Gamma b\Gamma M\Gamma b\Gamma b\Gamma \\ & \cup b\Gamma M\Gamma b\Gamma M\Gamma b\Gamma M\Gamma b\Gamma M\Gamma b \\ & = (A\Gamma A\Gamma M\Gamma A\Gamma A\Gamma A \cap A\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A \cap M\Gamma A\Gamma M\Gamma A\Gamma \\ & A\Gamma A \cup A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma \\ & = (A\Gamma M\Gamma A] \\ & \subseteq (A)_b. \end{aligned}$$

$$\begin{aligned} & \mathbf{Subcase} \ \mathbf{3.2:} \ b_3 \neq a \ \text{ and } b_4 = a \ \mathbf{.} \ \mathbf{By} \ \text{ assumption and } A = B \setminus \{a\}, \text{ we have} \\ & y = b_3 \gamma_1 m \gamma_2 b_4 \in (B \setminus \{a\})\Gamma M\Gamma (b\Gamma b \cup b\Gamma M\Gamma b)] \\ & = ((B \setminus \{a\})\Gamma M\Gamma (b\Gamma b \cup b\Gamma M\Gamma b)] \\ & \subseteq (A\Gamma M\Gamma A\Gamma A \cup A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma \\ & \subseteq (A\Gamma M\Gamma A\Gamma A \cup A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma \\ & \subseteq (A\Gamma M\Gamma A] \\ & \subseteq (A)_b. \end{aligned}$$

$$\begin{aligned} & \mathbf{Subcase} \ \mathbf{3.3:} \ b_3 = a \ \text{ and } b_4 \neq a \ \mathbf{.} \ \mathbf{By} \ \text{ assumption and } A = B \setminus \{a\}, \text{ we have} \\ & y = b_3 \gamma_1 m \gamma_2 b_4 \in (b\Gamma b \cup b\Gamma M\Gamma b)\Gamma M\Gamma (B \setminus \{a\}) \\ & \subseteq ((b\Gamma b \cup b\Gamma M\Gamma b)\Gamma M\Gamma (B \setminus \{a\})) \\ & = (b\Gamma b\Gamma M\Gamma (B \setminus \{a\}) \cup b\Gamma M\Gamma b\Gamma M\Gamma (B \setminus \{a\})] \\ & = (b\Gamma A\Gamma M\Gamma A \cup A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma (B \setminus \{a\})] \\ & = (A\Gamma M\Gamma A) \\ & \subseteq (A\Gamma M\Gamma A) \\ & = (A\Gamma M\Gamma A \cup A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A) \\ & \subseteq (A\Gamma M\Gamma A) \\ & = (A\Gamma M\Gamma A) \\ &$$

Subcase 3.4: $b_{_3} \neq a \;\; {\rm and} \;\; b_{_4} \neq a$. From $\; A = B \setminus \{a\}$, hence

$$y = b_3 \gamma_1 m \gamma_2 b_4 \in (B \setminus \{a\}) \Gamma M \Gamma(B \setminus \{a\}) \subseteq A \Gamma M \Gamma A \subseteq (A)_b$$

By case 1, 2 and 3 we have $M \subseteq (A)_b$. This implies $(A)_b = M$. This is a contradiction. Therefore, a = b.

Lemme 2.4. Let B be a bi- base of an ordered Γ - semigroup M. Let $a, b, c \in B$. If $a \in (c\Gamma b \cup c\Gamma M\Gamma b]$, then a = b or a = c.

Proof. Assume that $a \in (c\Gamma b \cup c\Gamma M\Gamma b]$. Suppose that $a \neq b, a \neq c$ let $A \coloneqq B \setminus \{a\}$, then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(A)_b = M$. Clearly, $(A)_b \subseteq M$. Let $x \in M$, we need to prove only that $M \subseteq (A)_b$. Since B is a bi-base of M, we have $x \in (B \cup B\Gamma B \cup B\Gamma M\Gamma B]$. Since we consider $x \in (B \cup B\Gamma B \cup B\Gamma M\Gamma B]$, then $x \leq y$ for some $y \in B \cup B\Gamma B \cup B\Gamma M\Gamma B$. We can consider the three following cases.

Case 1: $y \in B$. There are two subcases to consider.

Subcase 1.1:
$$y \neq a$$
. Then $y \in B \setminus \{a\} = A \subseteq (A)_b$.

Subcase 1.2: y = a. By assumption, we have

$$y = a \in (c\Gamma b \cup c\Gamma M\Gamma b] \subseteq (A\Gamma A \cup A\Gamma M\Gamma A] \subseteq (A)_{b}.$$

Case 2: $y \in B\Gamma B$. Then $y = b_1 \gamma b_2$ for some b_1 , $b_2 \in B$ and $\gamma \in \Gamma$. There are four subcases noise

to consider.

Subcase 2.1: $b_1 = a$ and $b_2 = a$. By assumption, we have

$$y = b_1 \gamma b_2 \in (c\Gamma b \cup c\Gamma M\Gamma b]\Gamma(c\Gamma b \cup c\Gamma M\Gamma b]$$

$$\subseteq ((c\Gamma b \cup c\Gamma M\Gamma b)\Gamma(c\Gamma b \cup c\Gamma M\Gamma b)]$$

$$= (c\Gamma b\Gamma c\Gamma b \cup c\Gamma b\Gamma c\Gamma M\Gamma b \cup c\Gamma M\Gamma b\Gamma c\Gamma b \cup c\Gamma M\Gamma b\Gamma c\Gamma M\Gamma b]$$

$$\subseteq (A\Gamma A\Gamma A\Gamma A \cup A\Gamma A\Gamma A\Gamma M\Gamma A \cup A\Gamma M\Gamma A\Gamma A\Gamma A\Gamma A$$

$$\cup A\Gamma M\Gamma A\Gamma A\Gamma M\Gamma A]$$

$$\subseteq (A\Gamma M\Gamma A]$$

$$\subseteq (A)_b.$$

Subcase 2.2: $b_1 \neq a$ and $b_2 = a$. By assumption and $A = B \setminus \{a\}$, we have $y = b_1 \gamma b_2 \in (B \setminus \{a\}) \Gamma(c \Gamma b \cup c \Gamma M \Gamma b]$

$$\begin{array}{l} \subseteq (B \setminus \{a\}) \Gamma(c\Gamma b \cup c\Gamma M\Gamma b) \\ \subseteq ((B \setminus \{a\}) \Gamma(c\Gamma b \cup c\Gamma M\Gamma b)) \\ = ((B \setminus \{a\}) \Gamma c\Gamma b \cup (B \setminus \{a\}) \Gamma c\Gamma M\Gamma b) \\ \subseteq (A\Gamma A\Gamma A \cup A\Gamma A\Gamma M\Gamma A] \\ \subseteq (A\Gamma M\Gamma A) \\ \subseteq (A)_{b}. \end{array}$$

Subcase 2.3: $b_1 = a$ and $b_2 \neq a$. By assumption and $A = B \setminus \{a\}$, we have $y = b_1 \gamma b_2 \in (c\Gamma b \cup c\Gamma M\Gamma b]\Gamma(B \setminus \{a\})$

$$egin{aligned} &\subseteq (c\Gamma b \cup c\Gamma M\Gamma b]\Gamma(B \setminus \{a\}) \ &\subseteq ((c\Gamma b \cup c\Gamma M\Gamma b)\Gamma(B \setminus \{a\})) \ &= (c\Gamma b\Gamma(B \setminus \{a\}) \cup c\Gamma M\Gamma b\Gamma(B \setminus \{a\})) \ &\subseteq (A\Gamma A\Gamma A \cup A\Gamma M\Gamma A\Gamma A] \ &\subseteq (A\Gamma M\Gamma A] \ &\subseteq (A)_b. \end{aligned}$$

Subcase 2.4: $b_{_1} \neq a \; \text{ and } \; b_{_2} \neq a \, .$ From $\; A = B \setminus \{a\} \, ,$ hence

$$y = b_1 \gamma b_2 \in (B \setminus \{a\}) \Gamma(B \setminus \{a\}) = A \Gamma A \subseteq (A)_b.$$

Case 3: $y \in B\Gamma M\Gamma B$. Then $y = b_3\gamma_1 m\gamma_2 b_4$ for some b_3 , $b_4 \in B$, γ_1 , $\gamma_2 \in \Gamma$ and $m \in M$. There are four subcases to consider.

Subcase 3.1: $b_3 = a$ and $b_4 = a$. By assumption, we have $y = b_{_{3}}\gamma_{_{1}}m\gamma_{_{2}}b_{_{4}} \in (c\Gamma b \cup c\Gamma M\Gamma b]\Gamma M\Gamma (c\Gamma b \cup c\Gamma M\Gamma b]$ $\subseteq ((c\Gamma b \cup c\Gamma M\Gamma b)\Gamma M\Gamma (c\Gamma b \cup c\Gamma M\Gamma b)]$ $= (c\Gamma b\Gamma M\Gamma c\Gamma b \cup c\Gamma b\Gamma M\Gamma c\Gamma M\Gamma b \cup c\Gamma M\Gamma b\Gamma M\Gamma c\Gamma b$ $\cup c\Gamma M\Gamma b\Gamma M\Gamma c\Gamma M\Gamma b]$ $\subseteq (A\Gamma A\Gamma M\Gamma A\Gamma A \cup A\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A \cup A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma A$ $\cup A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A\Gamma M\Gamma A$ $\subseteq (A\Gamma M\Gamma A]$ $\subseteq (A)_{i}$. Subcase 3.2: $b_{_3} \neq a$ and $b_{_4} = a$. By assumption and $A = B \setminus \{a\}$, we have $y = b_3 \gamma_1 m \gamma_2 b_4 \in (B \setminus \{a\}) \Gamma M \Gamma(c \Gamma b \cup c \Gamma M \Gamma b)$ $\subseteq (B \setminus \{a\}]\Gamma(M]\Gamma(c\Gamma b \cup c\Gamma M\Gamma b)$ $\subseteq ((B \setminus \{a\}) \Gamma M \Gamma (c \Gamma b \cup c \Gamma M \Gamma b)]$ $= ((B \setminus \{a\}) \Gamma M \Gamma c \Gamma b \cup (B \setminus \{a\}) \Gamma M \Gamma c \Gamma M \Gamma b]$ $\subseteq (A\Gamma M\Gamma A\Gamma A \cup A\Gamma M\Gamma A\Gamma M\Gamma A]$ $\subset (A\Gamma M\Gamma A]$ $\subseteq (A)_{h}$. Subcase 3.3: $b_{_3}=a~~{
m and}~ b_{_4}
eq a$. By assumption and $A=B\setminus\{a\}$, we have

Subcase 5.3. $b_3 = a$ and $b_4 \neq a$. By assumption and $A \equiv D \setminus \{a\}$, we have $y = b_3 \gamma_1 m \gamma_2 b_4 \in (c\Gamma b \cup c\Gamma M\Gamma b]\Gamma M\Gamma (B \setminus \{a\})$ $\subseteq (c\Gamma b \cup c\Gamma M\Gamma b)\Gamma (M]\Gamma (B \setminus \{a\})]$ $\subseteq ((c\Gamma b \cup c\Gamma M\Gamma b)\Gamma M\Gamma (B \setminus \{a\})]$

 $=(c\Gamma b\Gamma M\Gamma (B\setminus \{a\})\cup c\Gamma M\Gamma b\Gamma M\Gamma (B\setminus \{a\})]$

 $\subseteq (A\Gamma A\Gamma M\Gamma A \cup A\Gamma M\Gamma A\Gamma M\Gamma A]$

$$\subseteq (A\Gamma M\Gamma A$$

$$\subseteq (A)_{h}$$
.

Subcase 3.4: $b_{_3}
eq a$ and $b_{_4}
eq a$. From $A = B \setminus \{a\}$, hence

$$y = b_3\gamma_1 m \gamma_2 b_4 \in (B \setminus \{a\}) \Gamma M \Gamma (B \setminus \{a\}) \subseteq A \Gamma M \Gamma A \subseteq (A)_b.$$

By case 1, 2 and 3 we have $M \subseteq (A)_b$. This implies $(A)_b = M$. This is a contradiction. Therefore, a = b.

To characterize when a non-empty subset of an ordered Γ - semigroup is a bi-base of the ordered Γ - semigroup, we define the quasi-order defined as follows:

Definition 2.5. Let M be an ordered Γ -semigroup Define a quasi-order on M by, for any $a, b \in M$,

$$a \leq_{_{b}} b \Leftrightarrow (a)_{_{b}} \subseteq (b)_{_{b}}$$

The following examples show that the order \leq_b defined above is not , in general , a partial order.

Example 2.6. From Example 2.2, we have that $(b)_b \subseteq (d)_b$ (i.e., $b \leq_b d$) and $(d)_b \subseteq (b)_b$ (i.e., $d \leq_b b$) but $b \neq d$. Thus, \leq_b is not a partial order on M.

If A is a bi-base of M, then $(A)_b = M$. Let $x \in M$. Then $x \in (A)_b$ and so $x \in (a)_b$ for some $a \in A$. This implies $(x)_b \subseteq (a)_b$. Hence $x \leq_b a$. Then we can conclude that:

Remark 2.7. A non-empty subset B of an ordered Γ -semigroup (M,Γ,\leq) . If B is a bi-base of M, then for any $x \in H$ there exists $a \in B$ such that $x \leq_b a$.

Lemma 2.8. Let B be a bi-base of an ordered Γ -semigroup M. If $a, b \in B$ such that $a \neq b$, then neither $a \leq_b b$, nor $b \leq_b a$.

Proof. Assume that $a, b \in B$ such that $a \neq b$. Suppose $a \leq_b b$. Let $A = B \setminus \{a\}$. Then $b \in A$. Let $x \in M$. By Remark 2.7, there exists $c \in B$ such that $x \leq_b c$. We devide two cases to consider. If $c \neq a$, then $c \in A$ thus $(x)_b \subseteq (c)_b \subseteq (A)_b$. Hence $M = (A)_b$, this is a contradiction. If c = a, then $x \leq_b b$. Hence $x \in (A)_b$ since $b \in A$. We have $M = (A)_b$, this is a contradiction. In case $b \leq_b a$, we can prove similarly.

Lemma 2.9. Let B be a bi-base of an ordered Γ -semigroup M. Let $a, b, c \in B$ and $\gamma_1, \gamma_2 \in \Gamma$ and $m \in M$.

(1) If
$$a \in (\{b\gamma_1c\} \cup \{b\gamma_1c\}\Gamma\{b\gamma_1c\} \cup \{b\gamma_1c\}\Gamma M\Gamma\{b\gamma_1c\}]$$
, then $a = b$ or $a = c$.
(2) If $a \in (\{b\gamma_1m\gamma_2c\} \cup \{b\gamma_1m\gamma_2c\}\Gamma\{b\gamma_1m\gamma_2c\} \cup \{b\gamma_1m\gamma_2c\}\Gamma M\Gamma\{b\gamma_1m\gamma_2c\}]$, then $a = b$ or $a = c$.

Proof.(1)Assume that $a \in (\{b\gamma_1c\} \cup \{b\gamma_1c\} \Gamma \{b\gamma_1c\} \cup \{b\gamma_1c\} \Gamma M\Gamma \{b\gamma_1c\}]$, and suppose that $a \neq b$ and $a \neq c$. Let $A := B \setminus \{a\}$. Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(B)_b \subseteq (A)_b$, it suffices to show that $B \subseteq (A)_b$. Let $x \in B$, if $x \neq a$, that $x \in A$, and so $x \in (A)_b$. If x = a, then by assumption we have

$$\begin{split} x &= a \in (\{b\gamma_1 c\} \cup \{b\gamma_1 c\} \Gamma \{b\gamma_1 c\} \cup \{b\gamma_1 c\} \Gamma M \Gamma \{b\gamma_1 c\}]\\ &\subseteq (A \Gamma A \cup A \Gamma A \Gamma A \Gamma A \Gamma A \cup A \Gamma A \Gamma M \Gamma A \Gamma A]\\ &\subseteq (A \Gamma A \cup A \Gamma M \Gamma A]\\ &\subseteq (A)_b. \end{split}$$

Thus, $B \subseteq (A)_b$. This implies $(B)_b \subseteq (A)_b$. Since B is a bi-base of M and $M = (B)_b \subseteq (A)_b \subseteq M$, therefore, $S = (A)_b$, this is a contradiction.

(2) Assume that $a \in (\{b\gamma_1 m\gamma_2 c\} \cup \{b\gamma_1 m\gamma_2 c\}\Gamma\{b\gamma_1 m\gamma_2 c\} \cup \{b\gamma_1 m\gamma_2 c\}\Gamma M\Gamma\{b\gamma_1 m\gamma_2 c\}]$, and suppose that $a \neq b$ and $a \neq c$. Let $A := B \setminus \{a\}$. Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(B)_b \subseteq (A)_b$, it suffices to show that $B \subseteq (A)_b$. Let $x \in B$. If $x \neq a$, that $x \in A$, and so $x \in (A)_b$. If x = a, then by assumption we have

$$\subseteq (A)_{b}.$$

Thus, $B \subseteq (A)_b$. This implies $(B)_b \subseteq (A)_b$. Since B is a bi-base of M and $M = (B)_b \subseteq (A)_b \subseteq M$, therefore, $S = (A)_b$, this is a contradiction.

Lemma 2.10.Let B be a bi-base of an ordered Γ -semigroup M.

(1) For any $a, b, c \in B, \gamma_1 \in \Gamma$, if $a \neq b$ and $a \neq c$, then $a \nleq_b b \gamma_1 c$.

(2) For any $a, b, c \in B, \gamma_2, \gamma_3 \in \Gamma$ and $m \in M$, if $a \neq b$ and $a \neq c$, then

$$a \not\leq_{b} b\gamma_{2}m\gamma_{3}c$$

Proof. (1) For any $a, b, c \in B, \gamma_1 \in \Gamma$, let $a \neq b$ and $a \neq c$. Suppose that $a \leq_b b\gamma_1 c$, we have $a \in (a)_b \subseteq (b\gamma_1 c)_b = (\{b\gamma_1 c\} \cup \{b\gamma_1 c\} \Gamma \{b\gamma_1 c\} \cup \{b\gamma_1 c\} \Gamma \{b\gamma_1 c\}]$. By Lemma 2.9 (1), it follows that a = b or a = c, this contradicts to the assumption.

(2) For any $a, b, c \in B, \gamma_2, \gamma_3 \in \Gamma$ and $m \in M$, let $a \neq b$ and $a \neq c$. Suppose that $a \leq_b b\gamma_2 m\gamma_3 c$, we have

 $a \in (a)_{b} \subseteq (b\gamma_{2}m\gamma_{3}c)_{b} = (\{b\gamma_{2}m\gamma_{3}c\} \cup \{b\gamma_{2}m\gamma_{3}c\}\Gamma\{b\gamma_{2}m\gamma_{3}c\} \cup \{b\gamma_{2}m\gamma_{3}c\}\Gamma M\Gamma\{b\gamma_{2}m\gamma_{3}c\}].$ By Lemma 2.9 (2), it follows that a = b or a = c, this contradicts to the assumption.

The following theorem characterizes when a non-empty subset of an ordered Γ - semigroup M is a bibase of M.

Theorem 2.11. A non-empty subset B of an ordered Γ - semigroup M is a bi-base of M if and only if B satisfies the following conditions:

(1) For any $x \in M$,

(1.1) there exists $b\in B$ such that $x\leq_b b;$ or

- (1.2) there exists $b_1, b_2 \in B$ and $\gamma \in \Gamma$ such that $x \leq_b b_1 \gamma b_2;$ or
- (1.3) there exists $b_3, b_4 \in B, m \in M$ and $\gamma_1, \gamma_2 \in \Gamma$ such that $x \leq_b b_3 \gamma_1 m \gamma_2 b_4$.

(2) For any $a, b, c \in B, \gamma_1 \in \Gamma$, if $a \neq b$ and $a \neq c$, then $a \nleq_b b \gamma_1 c$.

(3) For any $a, b, c \in B, \gamma_2, \gamma_3 \in \Gamma$ and $m \in M$, if $a \neq b$ and $a \neq c$, then $a \nleq_b b\gamma_2 m\gamma_3 c$. **Proof.** Assume first B is a bi-base of M, then $M = (B)_b$. To show that (1) holds, Let $x \in M$, then $x \in (B \cup B\Gamma B \cup B\Gamma M\Gamma B]$. Since $x \in (B \cup B\Gamma B \cup B\Gamma M\Gamma B]$, we have $x \leq y$ for some $y \in B \cup B\Gamma B \cup B\Gamma M\Gamma B$. We consider three cases:

Case 1: $y \in B$. Then y = b for some $b \in B$. This implies $(y)_b \subseteq (b)_b$. Hence, $y \leq_b b$. Since $x \leq y$ for some $y \in (b)_b$, we have $x \in (b)_b$. We will show $(x)_b \subseteq (b)_b$. Consider

$$x \cup x\Gamma x \cup x\Gamma M\Gamma x \subseteq (b)_b \cup (b)_b \Gamma (b)_b \cup (b)_b \Gamma M\Gamma (b)_b$$

$$\subseteq (b \cup b\Gamma b \cup b\Gamma M\Gamma b].$$

Then we have $(x \cup x\Gamma x \cup x\Gamma M\Gamma x] \subseteq (b \cup b\Gamma b \cup b\Gamma M\Gamma b]$. This implies $(x)_b \subseteq (b)_b$. Hence, $x \leq_b b$.

Case 2: $y \in B\Gamma B$. Then $y = b_1 \gamma b_2$ for some $b_1, b_2 \in B$ and $\gamma \in \Gamma$. This implies $(y)_b \subseteq (b_1 \gamma b_2)_b$. Hence, $y \leq_b b_1 \gamma b_2$. Since $x \leq y$ for some $y \in (b_1 \gamma b_2)_b$, we have $x \in (b_1 \gamma b_2)_b$. We will show that $(x)_b \subseteq (b_1 \gamma b_2)_b$. Consider

$$\begin{split} x \cup x\Gamma x \cup x\Gamma M\Gamma x &\subseteq (b_1\gamma b_2)_b \cup (b_1\gamma b_2)_b \Gamma (b_1\gamma b_2)_b \cup (b_1\gamma b_2)_b \Gamma M\Gamma (b_1\gamma b_2)_b \\ &\subseteq (\{b_1\gamma b_2\} \cup \{b_1\gamma b_2\}\Gamma \{b_1\gamma b_2\} \cup \{b_1\gamma b_2\}\Gamma M\Gamma \{b_1\gamma b_2\}]. \end{split}$$

Then we have $(x \cup x\Gamma x \cup x\Gamma M\Gamma x] \subseteq (\{b_1\gamma b_2\} \cup \{b_1\gamma b_2\}\Gamma\{b_1\gamma b_2\} \cup \{b_1\gamma b_2\}\Gamma M\Gamma\{b_1\gamma b_2\}]$. This implies $(x)_b \subseteq (b_1\gamma b_2)_b$. Hence, $x \leq_b b_1\gamma b_2$.

Case 3 : $y \in B\Gamma M\Gamma B$. Then $y = b_3\gamma_1 m\gamma_2 b_4$ for some $b_3, b_4 \in B$ and $\gamma_1, \gamma_2 \in \Gamma$. This implies $(y)_b \subseteq (b_3\gamma_1 m\gamma_2 b_4)_b$. Hence, $y \leq_b (b_3\gamma_1 m\gamma_2 b_4)_b$. Since $x \leq y$ for some $y \in (b_3\gamma_1 m\gamma_2 b_4)_b$, we have $x \in (b_3\gamma_1 m\gamma_2 b_4)_b$. We will show that $(x)_b \subseteq (b_3\gamma_1 m\gamma_2 b_4)_b$. Consider $x \cup x\Gamma x \cup x\Gamma M\Gamma x \subseteq (b_3\gamma_1 m\gamma_2 b_4)_b \cup (b_3\gamma_1 m\gamma_2 b_4)_b \Gamma(b_3\gamma_1 m\gamma_2 b_4)_b \cup (b_3\gamma_1 m\gamma_2 b_4)_b \cap (b_3\gamma_1 m\gamma_2 b_4)_b \cup (b_3\gamma_1 m\gamma_2 b_4)_b$. Then $m\gamma_2 b_4)_b \subseteq (\{b_3\gamma_1 m\gamma_2 b_4\} \cup \{b_3\gamma_1 m\gamma_2 b_4\} \Gamma\{b_3\gamma_1 m\gamma_2 b_4\} \cup \{b_3\gamma_1 m\gamma_2$

Conversely, assume that the conditions (1), (2) and (3) are hold. We will show that B is a bi-base of M. To show that $M = (B)_b$. Clearly, $(B)_b \subseteq M$. By (1) $M \subseteq (B)_b$ and $M = (B)_b$. It remains to show that B is a minimal subset of M, with the property: $M = (B)_b$. Suppose that $M = (A)_b$ for some $A \subset B$. Since $A \subset B$, there exists $b \in B \setminus A$. Since $b \in B \subseteq M = (A)_b$ and $b \notin A$, it follows that $b \in (A\Gamma A \cup A\Gamma M\Gamma A]$. Since $b \in (A\Gamma A \cup A\Gamma M\Gamma A]$, we have $b \leq y$ for some $y \in A\Gamma A \cup A\Gamma M\Gamma A$. There are two cases to consider:

Case 1: $y \in A\Gamma A$. Then $y = a_1\gamma_1a_2$ for some $a_1, a_2 \in A$ and $\gamma_1 \in \Gamma$. We have $a_1, a_2 \in B$. Since $b \notin A$, so $b \neq a_1$ and $b \neq a_2$. Since $y = a_1\gamma_1a_2$, $(y)_b \subseteq (a_1\gamma_1a_2)_b$. Hence, $y \leq_b a_1\gamma_1a_2$. Since $b \leq y$ for some $y \in (a_1\gamma_1a_2)_b$, we have $b \in (a_1\gamma_1a_2)_b$. We will show that $(b)_b \subseteq (a_1\gamma_1a_2)_b$. Consider

 $b \cup b\Gamma b \cup b\Gamma M\Gamma b \subseteq (a_1\gamma_1a_2)_b \cup (a_1\gamma_1a_2)_b \Gamma(a_1\gamma_1a_2)_b \cup (a_1\gamma_1a_2)_b \Gamma M\Gamma(a_1\gamma_1a_2)_b \Gamma M\Gamma(a_1\gamma_1a_2)_b \cap M\Gamma(a_1\gamma_1a_2) \cap M\Gamma(a_1\gamma_1a_2) \cap M\Gamma(a_1\gamma_1a_2) \cap M\Gamma(a_1\gamma_1a_2) \cap M\Gamma(a_1\gamma_1a_2) \cap M\Gamma(a_1\gamma_$

 $\subseteq (\{a_1\gamma_1a_2\}\cup\{a_1\gamma_1a_2\}\Gamma\{a_1\gamma_1a_2\}\cup\{a_1\gamma_1a_2\}\Gamma M\Gamma\{a_1\gamma_1a_2\}]. \text{ Then we}$ have $(b\cup b\Gamma b\cup b\Gamma M\Gamma b] \subseteq (\{a_1\gamma_1a_2\}\cup\{a_1\gamma_1a_2\}\Gamma\{a_1\gamma_1a_2\}\cup\{a_1\gamma_1a_2\}\Gamma M\Gamma\{a_1\gamma_1a_2\}].$ This implies $(b)_b\subseteq (a_1\gamma_1a_2)_b$ Hence, $b\leq_b a_1\gamma_1a_2$. This contradicts to (2).

Case 2: $y \in A\Gamma M\Gamma A$. Then $y = a_3\gamma_2 m\gamma_3 a_4$ for some $a_3, a_4 \in A, \gamma_2, \gamma_3 \in \Gamma$ and $m \in M$. Since $b \notin A$, we have $b \neq a_3$ and $b \neq a_4$. Since $A \subset B, a_3, a_4 \in B$. Since $y = a_3\gamma_2 m\gamma_3 a_4$, so $(y)_b \subseteq (a_3\gamma_2 m\gamma_3 a_4)_b$. Hence, $y \leq_b a_3\gamma_2 m\gamma_3 a_4$. Since $b \leq y$ for some $y \in (a_3\gamma_2 m\gamma_3 a_4)_b$, we have $b \in (a_3\gamma_2 m\gamma_3 a_4)_b$. We will show that $(b)_b \subseteq (a_3\gamma_2 m\gamma_3 a_4)_b$. Consider

$$\begin{split} b \cup b\Gamma b \cup b\Gamma M\Gamma b &\subseteq (a_3\gamma_1 m\gamma_2 a_4)_b \cup (a_3\gamma_1 m\gamma_2 a_4)_b \Gamma(a_3\gamma_1 m\gamma_2 a_4)_b \cup (a_3\gamma_1 m\gamma_2 a_4)_b \Gamma M\Gamma(a_3\gamma_1 m\gamma_2 a_4)_b \\ m\gamma_2 a_4)_b &\subseteq (\{a_3\gamma_1 m\gamma_2 a_4\} \cup \{a_3\gamma_1 m\gamma_2 a_4\} \Gamma\{a_3\gamma_1 m\gamma_2 a_4\} \cup \{a_3\gamma_1 m\gamma_2 a_4\} \Gamma M\Gamma\{a_3\gamma_1 m\gamma_2 a_4\}]. \end{split}$$
Then we have

 $\begin{array}{l} (b \cup b\Gamma b \cup b\Gamma M\Gamma b] \subseteq \ (\{a_3\gamma_1 m\gamma_2 a_4\} \cup \{a_3\gamma_1 m\gamma_2 a_4\}\Gamma\{a_3\gamma_1 m\gamma_2 a_4\} \cup \{a_3\gamma_1 m\gamma_2 a_4\} \Gamma M\Gamma \\ \{a_3\gamma_1 m\gamma_2 a_4\}] \end{array} \\ \text{This implies } (b)_b \subseteq (a_3\gamma_1 m\gamma_2 a_4)_b. \text{ Hence, } x \leq_b a_3\gamma_1 m\gamma_2 a_4. \text{ This contradicts to (3)} \\ \text{therefore, } B \text{ is a bi-base of } M \text{ as required, and the proof is completed.} \end{array}$

Theorem 2.11. Let B be a bi-base of an ordered Γ - semigroup M. Then B is a sub- Γ - semigroup of M if and only if for any $a, b \in B$ and $\beta \in \Gamma$, $a\beta b = a$ or $a\beta b = b$.

Proof. Let $a, b \in B$ and $\beta \in \Gamma$. If B is a sub- Γ -semigroup of M, then $a\beta b \in B$. Since $a\beta b \in (a\Gamma b \cup a\Gamma M\Gamma b]$, it follows by Lemma 2.4 that $a\beta b = a$ or $a\beta b = b$. The opposite direction is clear.

References

- Changphas, T., & Sammaprab, P. (2014). On Two sided bases of an ordered semigroup. Quasi-group and Related Systems, 22(1), 59-66. Retrieved from http://www.quasigroups.eu
- Chinnadurai, V., & Arulmozhi, K. (2018). Characterization of bipolar fuzzy ideals in ordered gamma semigroups. Journal of The International Mathematical Virtual Institute, 8, 141-156. Retrieved from https://www.imvibl.org/journal.htm
- Chinram, R., & Tinpun, K. (2009). A note on minimal bi- ideals in ordered Γ semigroups. *International Mathematical Forum*, 4(1), 1–5. Retrieved from http://www.m-hikari.com/aims.html
- Fabrici, I. (1975). Two-sided bases of semigroups. Matematicky Casopis, 25(2), 173-178. Retrieved from http://dml.cz/dmlcz/126947
- Iampan, A. (2009). Characterizing Ordered Bi- Idealsin Ordered Γ Semigroups. Iranian Journal of Mathematical Sciences and Informatics, 4(1), 17-25. Retrieved from http://dx.doi.org/10.7508/ ijmsi.2009.01.002
- Kehayopulu, N. (2010), On ordered Γ -semigroups. Scientiae Mathematicae Japonicae, 23, 37-43.
- Kummoon, P., & Changphas, T. (2017). Bi-Bases of Γ -semigroup. Thai Journal of Mathematics, 75-86. Retrieved from http://thaijmath.in.cmu.ac.th
- Kummoon, P., & Changphas, T. (2017). On bi-base of semigroup. Quasigroup and Related Systems, 25(1), 87-94. Retrieved from http://www.quasigroups.eu
- Sen, M. K. (1981). On Γ semigroups. Proceedings of International Conference on Algebra and It's Applications, New York, 301-308.
- Sen, M. K., & Saha, N. K. (1986). On Γ -semigroup I. Bulletin of Calcutta Mathematical Society, 78, 180-186.
- Saha, N. K. (1987). On Γ -semigroup II. Bulletin of Calcutta Mathematical Society, 79, 331–335.
- Saha, N. K. (1998). On Γ -semigroup III. Bulletin of Calcutta Mathematical Society, 80, 1-13.