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Abstract 
In this paper, based on the results of ordered bi-ideals generated by a non-empty subset of an ordered -semigroups M ,  

we introduce the concept of bi-base of M . Using the quasi-order on M  defined by the principal ordered bi-ideals of .M  we 
characterize when a non-empty subset of M  is a bi-base of M . The results obtained extending the results on -semigroup. 
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Introduction 

The notion of two- sided bases of a semigroup was introduced by Fabrici ( 1975) .  The results ( Fabrici, 
1975). Have extended to ordered semigroups by Changpas and Summaprab (Changpas&Summaprab, 2014). 
In 2017 Kummoon and Changpas studied the notion of bi- bases of a semigroup ( Kummoon & Changpas, 
2017) and bi-bases of -semigroup (Kummoon & Changpas, 2017). 
 This is an algebraic structure, generalized the concept of semigroups, called a - semigroup introduced by 
Sen ( 1981) .  The notion of a - semigroup was defined as a generalization of a semigroup by the following 
definition (Sen & Saha, 1986; Saha, 1987; Saha, 1998). 
Definition 1.1.  Let { ,M x ,y ,z ...} and { , , , ...} be any two non- empty sets.  Then M  is 
said to be a -semigroup if it satisfies the two following conditions:  

(1) x y M  for all ,x y M  and ;

(2) ( ) ( )x y z x y z  for all ,x ,y z M  and , .
Let M  be a  -semigroup. If A  and B  are two subsets of ,M  we shall denote the

: { ,A B a b a A b B and }. We also write ,a B A b  and a b  for { } ,a B { }A b  
and { } { },a b  respectively. 
Definition 1.2.  Let M  be a - semigroup and a nonempty subset A  of M  is called a sub- - semigroup 
of M  if .A A T  
 The main purpose of this paper is to introduce the concept of bi- bases of an ordered  - semigroup and 
extend some of bi- bases of - semigroup results .  Ordered - semigroup was studied by Kehayopula 
(Kehayopulu, 2010). In 2009, Chinram and Tinpun (2009) studied some properties of bi-ideals and minimal 
bi-ideals in ordered -semigroups.  
Definition 1.3. ( , , )M  is called an ordered  - semigroup if ( , )M is a  - semigroup and( , )M  is 
a partially ordered set such that a b a c b c  and c a c b  for all ,a ,b c M  and . 

 if ( ; )M  is an ordered - semigroup ,  and K  is a sub- - semigroup of ,M  then ( ; )K  is an 
ordered -semigroup. For an element a of ordered -semigroup  ,M  define ( ] : { }a t M t a  and 
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for a subset H  of ,M  define ( ] ( ],
h H

H h  that is , ( ] {H t M t h  for  subset },h H and

: { }.H a H a  We observe here that  
 1. ( ] ( ] .H H H  

 2. For any subsets A  and B of M  with ,A B  we have ( ] ( ].A B  
 3. For any subsets A  and B of ,M  we have ( ] ( ] ( ].A B A B  
 4. For any subsets A  and B of ,M  we have ( ] ( ] ( ].A B A B  

 5. For any subsetsa andb ofM with ,a b we have( ] ( ]a M b M and( ] ( ].M a M b  
Definition 1.4.  Let ( , , )M  be an ordered - semigroup.  A nonempty subset A  of M  is called a bi-
ideal of M  if the following hold. 

 1.B M B B  
2. If ,x B  and ,y M  such that ,y x  then y B . 

In 2009, lampan give some results which are necessary in ordered bi-ideals of M (lampan, 2009). 
Lemma 1.5.  For any nonempty subsetA of a ordered  - semigroup ,M ( ]A A A A M A  is the 
smallest ordered bi-ideal of M containing A . Furthermore,  for any ,a M  

( ) ( ]
b
a a a a a M a . 

Lemma 1.6.  Let { }
i
B i I  be a family of ordered bi- ideals of M Then i

i I
B  is an ordered bi- ideal of 

M  if i
i I
B . 

 
Main Results 

 
 We begin this section with the following definition of bi-bases of an ordered -semigroup. 

Definition 2.1.Let M  be an ordered -semigroup. A  subset B  of called a bi-base of M  if it satisfies the 
two following conditions: 
 1. ( ) ;

b
M B  

 2. if A  is a subset of B  such that ( ) ,
b

M A  then .A B  
Example 2.2  Let { ,M a ,b ,c }d  and { , }  where ,  is defined on M  with the following 
Cayley tables: 

 a  b  c  d     a  b  c  d  
a  a  a  a  a    a  a  a  a  a  
b  a  b  c  d    b  a  b  c  d  
c  a  c  c  c    c  a  c  c  c  
d  a  c  c  c    d  a  b  c  d  

  : {( ,a ),a ( ,a ),b ( ,a ),c ( ,a ),d ( ,b ),b ( ,b ),c ( ,b ),d ( ,c ),c ( ,d ),c ( ,d )}.d  
 In ( Chinnadurai & Arulmozhi, 2018) , we have shown that ( ,M , )  is an ordered - semigroup. 
Consider '

1
{ }B b  and '

2
{ }B d is not a bi-base of M . But 1

{ ,B b }d  is a bi-base of .M  
Lemme 2.3 LetB be a bi-base of an ordered  -semigroupM . Let ,a .b B If ( ],a b b b M b

then a b . 
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Consider '
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{ }B d is not a bi-base of M . But 1

{ ,B b }d  is a bi-base of .M  
Lemme 2.3 LetB be a bi-base of an ordered  -semigroupM . Let ,a .b B If ( ],a b b b M b

then a b . 

Proof. Assume that ( ]a b b b M b , and suppose that a b .  Let : \ { }A B a .  It is clearly 
seen that A B .  Since a b , b A , we will show that ( )

b
A M .  Clearly, ( )

b
A M .  

 Next, we show that ( ) .
b

M A  Let x M .  By hypothesis, we have ( )
b

B M  and so
( ]x B B B B M B .  Since ( ]x B B B B M B , we have x y  for some 

y B B B B M B .We can consider the three following  cases. 
 Case 1:y B . There two subcases to consider. 
   Subcase 1.1:y a .Then \ { } ( )

b
y B a A A . 

   Subcase 1.2:y a . By assumption, we have  
    ( ] ( ] ( )

b
y a b b b M b A A A M A A . 

 Case 2: y B B . Then 1 2
y b b  for some 1

b , 2
b B  and . There are four subcases 

to consider. 
   Subcase 2.1: 1

b a  and 2
b a . By assumption, so we have the following:   

  1 2
( ] ( ]y b b b b b M b b b b M b  

    (( ) ( )]b b b M b b b b M b     
    ( ]b b b b b b b M b b M b b b b M b b M b  
    (A A A A A A A M A A M A A A  
    ]A M A A M A  
    ( ]A M A  
    ( )

b
A . 

  Subcase 2.2: 1
b a  and 2

b a . By assumption and \{ }A B a , we have  
  1 2

( \ { }) ( ]y b b B a b b b M b  
    (( \{ }) ( )]B a b b b M b  
    (( \{ }) ( \{ }) ]B a b b B a b M b  
    ( ]A A A A A M A  
    ( ]A M A  
    ( )

b
A . 

  Subcase 2.3: 1
b a  and 2

b a . By assumption and \{ }A B a , we have  
  1 2

( ] ( \ { })y b b b b b M b B a  
    (( ) ( \{ })]b b b M b B a  
    ( ( \{ }) ( \{ })]b b B a b M b B a  
    ( ]A A A A M A A  
    ( ]A M A  
    ( ) .

b
A  

   Subcase 2.4: 1
b a  and 2

b a , from \{ }A B a . Then  
   1 2

( \ { }) ( \ { }) ( )
b

y b b B a B a A A A . 
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 Case 3:  y B M B .  Then 3 1 2 4
y b m b  for some 3

b , 
4
b B , 

1
, 

2
 and 

m M  There are four subcases to consider. 
   Subcase 3.1:

3
b a  and 

4
b a . By assumption, we have      

  
3 1 2 4

( ] ( ]y b m b b b b M b M b b b M b  
    (( ) ( )]b b b M b M b b b M b  
    (b b M b b b b M b M b b M b M b b  
     ]b M b M b M b  
    (A A M A A A A M A M A A M A M  
     ]A A A M A M A M A  
    ( ]A M A  
    ( )

b
A . 

   Subcase 3.2: 3
b a  and 4

b a . By assumption and \{ }A B a , we have  
  3 1 2 4

( \ { }) ( ]y b m b B a M b b b M b  
    (( \{ }) ( )]B a M b b b M b  
    (( \{ }) ( \{ }) ]B a M b b B a M b M b  
    ( ]A M A A A M A M A  
    ( ]A M A  
    ( )

b
A . 

   Subcase 3.3: 3
b a  and 4

b a . By assumption and \{ }A B a , we have 
  3 1 2 4

( ] ( \ { })y b m b b b b M b M B a  
    (( ) ( \{ })]b b b M b M B a  
    ( ( \{ }) ( \{ })]b b M B a b M b M B a    
   ( ]A A M A A M A M A  
    ( ]A M A  
    ( )

b
A . 

  Subcase 3.4: 3
b a  and 4

b a . From \{ }A B a , hence 
   3 1 2 4

( \ { }) ( \ { })y b m b B a M B a A M A ( ) .
b

A  
By case 1, 2 and 3 we have ( ) .

b
M A  This implies ( )

b
A M .  This is a contradiction.  Therefore, 

a b . 
Lemme 2. 4. Let B  be a bi- base of an ordered - semigroup M .  Let ,a ,b c B .  If

( ]a c b c M b , then a b  or a c . 
Proof. Assume that ( ].a c b c M b  Suppose that ,a b a c  let : \ { },A B a then 

.A B Since a b  and a c , we have ,b c A .  We will show that ( )
b
A M .  Clearly, 

( )
b
A M . Let ,x M  we need to prove only that ( )

b
M A . Since B  is a bi-base of M , we have 

( ]x B B B B M B .  Since we consider ( ]x B B B B M B , then x y  for 
some y B B B B M B . We can consider the three following cases. 
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   Subcase 3.1:
3
b a  and 

4
b a . By assumption, we have   

  
3 1 2 4

( ] ( ]y b m b c b c M b M c b c M b  

    (( ) ( )]c b c M b M c b c M b     
   (c b M c b c b M c M b c M b M c b  
     ]c M b M c M b  
    (A A M A A A A M A M A A M A M A A  
     ]A M A M A M A    
    ( ]A M A  
    ( )

b
A . 

  Subcase 3.2: 3
b a  and 4

b a . By assumption and \{ }A B a , we have  
  3 1 2 4

( \ { }) ( ]y b m b B a M c b c M b  

    ( \{ }] ( ] ( ]B a M c b c M b  
    (( \{ }) ( )]B a M c b c M b  
    (( \{ }) ( \{ }) ]B a M c b B a M c M b  
    ( ]A M A A A M A M A  
    ( ]A M A  
    ( )

b
A . 

 Subcase 3.3: 3
b a  and 4

b a . By assumption and \{ }A B a , we have 
  3 1 2 4

( ] ( \ { })y b m b c b c M b M B a  

    ( ] ( ] ( \{ }]c b c M b M B a  
    (( ) ( \{ })]c b c M b M B a  
    ( ( \{ }) ( \{ })]c b M B a c M b M B a  
    ( ]A A M A A M A M A  
    ( ]A M A  
    ( )

b
A . 

  Subcase 3.4: 3
b a  and 4

b a . From \{ }A B a , hence 
   3 1 2 4

( \ { }) ( \ { })y b m b B a M B a A M A ( )
b

A . 
 By case 1, 2 and 3 we have ( ) .

b
M A  This implies ( ) .

b
A M This is a contradiction. Therefore, 

a b . 
 To characterize when a non- empty subset of an ordered - semigroup is a bi- base of the ordered -
semigroup, we define the quasi-order defined as follows: 
Definition 2.5. Let M  be an ordered -semigroup Define a quasi-order on M  by ,  for any ,a ,b M  

( ) ( ) .
b b b

a b a b  
 The following examples show that the order b  defined above is not ,  in general , a partial order. 
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Definition 2.5. Let M  be an ordered -semigroup Define a quasi-order on M  by ,  for any ,a ,b M  

( ) ( ) .
b b b

a b a b  
 The following examples show that the order b  defined above is not ,  in general , a partial order. 

Example 2. 6. From Example 2. 2 , we have that ( ) ( )
b b
b d ( i. e. , )

b
b d  and ( ) ( )

b b
d b ( i. e. ,

)
b

d b  but b d . Thus, b  is not a partial order on M . 
 If A  is a bi- base of M , then ( ) .

b
A M  Let x M .  Then ( )

b
x A  and so ( )

b
x a  for some 

a A . This implies ( ) ( ) .
b b
x a  Hence .

b
x a Then we can conclude that: 

Remark 2.7.  A non- empty subset B  of an ordered - semigroup ( , , )M .  If B  is a bi- base of ,M  

then for any x H there  existsa B  such that  .
b

x a  
Lemma 2.8.  Let B be a bi- base of an ordered - semigroup M .  If ,a b B  such that ,a b  then 
neither ,

b
a b  nor b

b a . 
Proof. Assume that ,a b B  such that .a b  Suppose .

b
a b  Let \{ }.A B a  Then .b A  Let 

.x M  By Remark 2.7, there exists c B  such that .
b

x c  We devide two cases to consider. If ,c a  
then c A  thus ( ) ( ) ( )

b b b
x c A . Hence ( ) ,

b
M A  this is a contradiction. If ,c a  then .

b
x b

Hence ( )
b

x A  since b A . We have ( ) ,
b

M A  this is a contradiction. In case ,
b

b a  we can prove 
similarly. 

Lemma 2.9. Let B  be a bi-base of an ordered -semigroup M . Let ,a ,b c B  and 1
,

2

and .m M  
 (1)If 1 1 1 1 1

({ } { } { } { } { }],a b c b c b c b c M b c  then a b  or .a c  
 ( 2) If 1 2 1 2 1 2 1 2 1 2

({ } { } { } { } { }],a b m c b m c b m c b m c M b m c  then 
a b  or a c . 
Proof.(1)Assume that 1 1 1 1 1

({ } { } { } { } { }],a b c b c b c b c M b c  and suppose that a b  
and a c . Let : \ { }A B a . Then A B . Since a b  and a c , we have ,b c A . We will 
show that ( ) ( ) ,

b b
B A  it suffices to show that ( ) .

b
B A  let ,x B  if x a , that x A, and so 

( ) .
b

x A If ,x a  then by assumption we have 
   x a 1 1 1 1 1

({ } { } { } { } { }]b c b c b c b c M b c  
   ( ]A A A A A A A A M A A  
   ( ]A A A M A  
   ( ) .

b
A  

Thus, ( ) .
b

B A This implies ( ) ( )
b b

B A . Since B  is a bi-base of M  and ( ) ( ) ,
b b

M B A M

therefore, ( ) ,
b

S A  this is a contradiction. 
       (2) Assume that 1 2 1 2 1 2 1 2 1 2

({ } { } { } { } { }],a b m c b m c b m c b m c M b m c

and suppose that a b and a c . Let : \ { }.A B a  Then A B . Since a b  and a c , we 
have ,b c A . We will show that ( ) ( ) ,

b b
B A  it suffices to show that ( ) .

b
B A  let x B . If x a

, thatx A, and so ( )
b

x A . If ,x a  then by assumption we have 
   y a 1 2 1 2 1 2 1 2 1 2

({ } { } { } { } { }]b m c b m c b m c b m c M b m c  
   ( ]A M A A M A A M A A M A M A M A  
   ( ]A M A  
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   ( ) .
b

A  
Thus, ( ) .

b
B A This implies ( ) ( )

b b
B A . Since B  is a bi-base of M  and ( ) ( ) ,

b b
M B A M  

therefore, ( ) ,
b

S A this is a contradiction. 
Lemma 2.10.Let B  be a bi-base of an ordered -semigroup M . 
 (1) For any ,a ,b ,c B 1 ,  if a b and ,a c  then 1b

a b c . 
 (2) For any ,a ,b ,c B 2

,
3 and ,m M  if a b  and ,a c  then 

2 3b
a b m c . 
Proof. ( 1)  For any ,a ,b ,c B 1

,  let a b  and .a c  Suppose that 1
,

b
a b c  we have 

1 1 1 1 1 1
( ) ( ) ({ } { } { } { } { }].

b b
a a b c b c b c b c b c M b c  By Lemma 2. 9 (1) ,  it 
follows that a b  or ,a c  this contradicts to the assumption. 

 ( 2)  For any ,a ,b ,c B 2
,

3  and ,m M  let a b  and .a c  Suppose that

2 3
,

b
a b m c  we have 

2 3 2 3 2 3 2 3 2 3 2 3
( ) ( ) ({ } { } { } { } { }].

b b
a a b m c b m c b m c b m c b m c M b m c

By Lemma 2.9 (2),  it follows that a b  or ,a c  this contradicts to the assumption. 
 The following theorem characterizes when a non- empty subset of an ordered - semigroup M  is a bi-
base of .M  
Theorem 2.11.  A non- empty subset B of an ordered - semigroup M  is a bi- base of M  if and only if 
B  satisfies the following conditions: 
 (1) For any ,x M  
 (1.1) there exists b B such that ;

b
x b  or 

 (1.2) there exists 1
,b

2
b B and such that 1 2

;
b

x b b  or 
 (1.3) there exists 3

,b
4

,b B m M and 1
,

2 such that 3 1 2 4
.

b
x b m b  

 (2) For any ,a ,b ,c B 1
,  if a b  and ,a c  then b

a
1

b c . 

 (3) For any ,a ,b ,c B 2
,

3 and ,m M  if a b  and ,a c  then 2 3
.

b
a b m c  

Proof.  Assume first B  is a bi- base of ,M  then ( ) .
b

M B To show that (1) holds ,  Let ,x M  then 
( ].x B B B B M B Since ( ],x B B B B M B We have x y for some

.y B B B B M B  We consider three cases: 
 Case 1:  .y B  Then y b  for some .b B  This implies ( ) ( ) .

b b
y b  Hence , .

b
y b  

Since x y  for some ( ) ,
b

y b  we have ( ) .
b

x b  We will show ( ) ( ) .
b b
x b  Consider  

   ( ) ( ) ( ) ( ) ( )
b b b b b

x x x x M x b b b b M b  
     ( ].b b b b M b  
 Then we have ( ] ( ]x x x x M x b b b b M b . This implies ( ) ( ) .

b b
x b Hence ,

.
b

x b  
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   ( ) .
b

A  
Thus, ( ) .

b
B A This implies ( ) ( )

b b
B A . Since B  is a bi-base of M  and ( ) ( ) ,

b b
M B A M  

therefore, ( ) ,
b

S A this is a contradiction. 
Lemma 2.10.Let B  be a bi-base of an ordered -semigroup M . 
 (1) For any ,a ,b ,c B 1 ,  if a b and ,a c  then 1b

a b c . 
 (2) For any ,a ,b ,c B 2

,
3 and ,m M  if a b  and ,a c  then 

2 3b
a b m c . 
Proof. ( 1)  For any ,a ,b ,c B 1

,  let a b  and .a c  Suppose that 1
,

b
a b c  we have 

1 1 1 1 1 1
( ) ( ) ({ } { } { } { } { }].

b b
a a b c b c b c b c b c M b c  By Lemma 2. 9 (1) ,  it 
follows that a b  or ,a c  this contradicts to the assumption. 

 ( 2)  For any ,a ,b ,c B 2
,

3  and ,m M  let a b  and .a c  Suppose that

2 3
,

b
a b m c  we have 

2 3 2 3 2 3 2 3 2 3 2 3
( ) ( ) ({ } { } { } { } { }].

b b
a a b m c b m c b m c b m c b m c M b m c

By Lemma 2.9 (2),  it follows that a b  or ,a c  this contradicts to the assumption. 
 The following theorem characterizes when a non- empty subset of an ordered - semigroup M  is a bi-
base of .M  
Theorem 2.11.  A non- empty subset B of an ordered - semigroup M  is a bi- base of M  if and only if 
B  satisfies the following conditions: 
 (1) For any ,x M  
 (1.1) there exists b B such that ;

b
x b  or 

 (1.2) there exists 1
,b

2
b B and such that 1 2

;
b

x b b  or 
 (1.3) there exists 3

,b
4

,b B m M and 1
,

2 such that 3 1 2 4
.

b
x b m b  

 (2) For any ,a ,b ,c B 1
,  if a b  and ,a c  then b

a
1

b c . 
 (3) For any ,a ,b ,c B 2

,
3 and ,m M  if a b  and ,a c  then 2 3

.
b

a b m c  
Proof.  Assume first B  is a bi- base of ,M  then ( ) .

b
M B To show that (1) holds ,  Let ,x M  then 

( ].x B B B B M B Since ( ],x B B B B M B We have x y for some
.y B B B B M B  We consider three cases: 

 Case 1:  .y B  Then y b  for some .b B  This implies ( ) ( ) .
b b
y b  Hence , .

b
y b  

Since x y  for some ( ) ,
b

y b  we have ( ) .
b

x b  We will show ( ) ( ) .
b b
x b  Consider  

   ( ) ( ) ( ) ( ) ( )
b b b b b

x x x x M x b b b b M b  
     ( ].b b b b M b  
 Then we have ( ] ( ]x x x x M x b b b b M b . This implies ( ) ( ) .

b b
x b Hence ,

.
b

x b  

 Case 2: .y B B  Then 1 2
y b b for some 1

,b
2
b B and . This implies 

1 2
( ) ( ) .

b b
y b b  Hence ,

1 2
.

b
y b b  Since x y  for some 1 2

( ) ,
b

y b b  we have 1 2
( ) .

b
x b b We 

will show that 1 2
( ) ( )

b b
x b b . Consider 

   1 2 1 2 1 2 1 2 1 2
( ) ( ) ( ) ( ) ( )

b b b b b
x x x x M x b b b b b b b b M b b  

     1 2 1 2 1 2 1 2 1 2
({ } { } { } { } { }].b b b b b b b b M b b  

Then we have 1 2 1 2 1 2 1 2 1 2
( ] ({ } { } { } { } { }] .x x x x M x b b b b b b b b M b b This 

implies 1 2
( ) ( ) .

b b
x b b  Hence ,

1 2b
x b b . 

 Case 3 : .y B M B  Then 3 1 2 4
y b m b  for some 3

,b
4
b B  and 1

,
2 .  This 

implies 3 1 2 4
( ) ( ) .

b b
y b m b Hence ,

3 1 2 4
( ) .

b b
y b m b  Since x y  for some 3 1 2 4

( ) ,
b

y b m b  
we have 3 1 2 4

( ) .
b

x b m b  We will show that 3 1 2 4
( ) ( )

b b
x b m b . Consider 

3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1
( ) ( ) ( ) ( ) (

b b b b
x x x x M x b m b b m b b m b b m b M b

2 4
)
b

m b
3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4

({ } { } { } { } { }].b m b b m b b m b b m b M b m b Then 

we have 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4
( ] ({ } { } { } { }x x x x M x b m b b m b b m b b m b

3 1 2 4
{ }] .M b m b  This implies 3 1 2 4

( ) ( )
b b
x b m b .  Hence ,

3 1 2 4b
x b m b .  The validity of 

(2) and (3) follows , respectively ,  from Lemma 2.10 (1) and Lemma 2.10 (2) 
 Conversely ,  assume that the conditions (1), (2) and (3) are hold. We will show that B  is a bi-base 

of .M  To show that ( ) .
b

M B  Clearly , ( ) .
b

B M  By (1) ( )
b

M B  and ( ) .
b

M B It remains to 
show that B  is a minimal subset of ,M  with the property: ( ) .

b
M B  Suppose that ( )

b
M A  for some 

.A B  Since ,A B  there exists \ .b B A  Since ( )
b

b B M A  and ,b A  it follows that 
( ].b A A A M A Since ( ],b A A A M A we have b y  for some

.y A A A M A There are two cases to consider:  
 Case 1:y A A . Then 1 1 2

y a a for some 1
,a

2
a A and 1

.  We have 1
,a

2
.a B

Since ,b A so 1
b a  and 2

b a .  Since 1 1 2
,y a a

1 1 2
( ) ( ) .

b b
y a a  Hence ,

1 1 2
.

b
y a a  

Since b y  for some 1 1 2
( ) ,

b
y a a  we  have 1 1 2

( ) .
b

b a a We will show that 1 1 2
( ) ( ) .
b b
b a a

Consider 
 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

( ) ( ) ( ) ( ) ( )
b b b b b

b b b b M b a a a a a a a a M a a  
    1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

({ } { } { } { } { }].a a a a a a a a M a a Then we 
have 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

( ] ({ } { } { } { } { }] .b b b b M b a a a a a a a a M a a This 

implies 1 1 2
( ) ( )
b b
b a a  Hence ,

1 1 2b
b a a . This contradicts to (2).  

 Case 2:  y A M A.  Then 3 2 3 4
y a m a  for some 3

,a
4

,a A
2
,

3  and 
m M .  Since ,b A we have 3

b a  and 4b a .  Since ,A B 3
,a

4
a B .  Since 

3 2 3 4
,y a m a  so 3 2 3 4

( ) ( ) .
b b
y a m a Hence , 3 2 3 4

.
b

y a m a  Since b y  for some 

3 2 3 4
( ) ,

b
y a m a  we have 3 2 3 4

( ) .
b

b a m a  We will show that 3 2 3 4
( ) ( ) .
b b
b a m a  Consider 
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3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1
( ) ( ) ( ) ( ) (

b b b b
b b b b M b a m a a m a a m a a m a M a  

2 4
)
b

m a
3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4

({ } { } { } { } { }].a m a a m a a m a a m a M a m a

Thenwe have 

3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4
( ] ({ } { } { } { }b b b b M b a m a a m a a m a a m a M

3 1 2 4
{ } ]a m a This implies 3 1 2 4

( ) ( ) .
b b
b a m a  Hence ,

3 1 2 4b
x a m a . This contradicts to (3) 

therefore , B  is a bi-base of M  as required ,  and the proof is completed. 
Theorem 2.11. Let B  be a bi-base of an ordered - semigroup .M  Then B  is a sub- - semigroup of 
M  if and only if for any ,a b B  and , a b a  or .a b b  
Proof.  Let ,a b B  and .  If B  is a sub- - semigroup of ,M  then .a b B  Since 

( ],a b a b a M b  it follows by Lemma 2.4 that a b a  or .a b b  The opposite direction 
is clear. 
 

References 
 

Changphas, T., & Sammaprab, P. (2014).  On Two sided bases of an ordered semigroup.  Quasi-group and  
Related Systems, 22(1), 59-66. Retrieved from http://www.quasigroups.eu 

Chinnadurai, V. , & Arulmozhi, K.  ( 2018) .   Characterization of bipolar fuzzy ideals in ordered gamma  
semigroups.  Journal of The International Mathematical Virtual Institute, 8, 141- 156.  Retrieved from  
https://www.imvibl.org/journal.htm 

Chinram, R. , & Tinpun, K.  (2009).   A note on minimal bi- ideals in ordered -semigroups.  International 
Mathematical Forum, 4(1), 1-5. Retrieved from http://www.m-hikari.com/aims.html 

Fabrici, I. (1975).  Two-sided bases of semigroups.  Matematick´y ˇCasopis, 25(2), 173-178. Retrieved  
from http://dml.cz/dmlcz/126947 

Iampan, A.  ( 2009) . Characterizing Ordered Bi- Idealsin Ordered - Semigroups.  Iranian Journal of 
Mathematical Sciences and Informatics, 4(1) , 17-25.  Retrieved from http://dx.doi.org/10.7508/ 
ijmsi.2009.01.002 

Kehayopulu, N. (2010), On ordered -semigroups. Scientiae Mathematicae Japonicae, 23, 37-43. 
Kummoon, P., & Changphas, T. (2017).  Bi-Bases of -semigroup.  Thai Journal of Mathematics, 75-86. 

Retrieved from http://thaijmath.in.cmu.ac.th 
Kummoon, P., & Changphas, T. (2017).  On bi-base of semigroup.  Quasigroup and Related Systems, 25(1), 

87-94. Retrieved from http://www.quasigroups.eu 
Sen, M. K.  ( 1981) .   On Γ- semigroups. Proceedings of International Conference on Algebra and It’ s  

Applications, New York, 301-308. 
Sen, M. K., & Saha, N. K. (1986).  On Γ-semigroup I.  Bulletin of Calcutta Mathematical Society, 78, 180-

186. 
Saha, N. K. (1987).  On Γ-semigroup II.  Bulletin of Calcutta Mathematical Society, 79, 331-335. 
Saha, N. K. (1998).  On Γ-semigroup III.  Bulletin of Calcutta Mathematical Society, 80, 1-13. 

 
 


