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Abstract 
In this paper, the dynamics of hepatitis B virus (HBV) infection is studied through a mathematical model. The model includes 

vaccination class of population, vertical transmission of newborns and treatment of both acute HBV infected individuals and chronic 
HBV carriers. The stability of equilibria both locally and globally is analyzed. The result shows that the basic reproduction number 
becomes threshold value i.e. the disease-free equilibrium is globally stable when it is less than unity, and the infection is uniformly 
persistent and the endemic equilibrium is globally stable when it is greater than one. Further, an optimal control model is developed 
to seek the strategy to minimize the transmission of HBV. There are three control variables within the model which are prevention 
by vaccination, treatment of acute infected and treatment of chronic HBV carriers. Our numerical results show that among three 
controls, treatment of acute infected individuals gives the best impact in reducing the HBV infection. However, with three controls 
together, they give the best strategy in reducing overall HBV infection. 
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Introduction 

Hepatitis B virus (HBV) infection is a serious public health problem. The virus is transmitted through contact 
with the blood or other body fluids of an infected person. It causes liver inflammation and can lead to cirrhosis, 
primary hepatocellular carcinoma and liver cancer.  There are two phases of HBV infection which are acute and 
chronic.  Acute HBV infection lasts less than six months, usually the immune system is able to clear virus from 
the body and the body will recover within a few months ( Hepatitis B Foundation, n. d. ) , whereas the chronic 
HBV infection lasts longer than six months. Approximately one-third of chronic HBV infection patients develop 
an active hepatitis whereas two-thirds of chronic HBV infection patients are chronic carriers who do not develop 
symptoms but can transmit the virus to other people. 

According to World Health Organization, globally in 2015, an estimated 257 million people were living 
with chronic HBV infection and hepatitis B resulted in 887,000 deaths, mostly from complications including 
cirrhosis and hepatocellular carcinoma (WHO, 2020). The rate of chronicity is about 90% in infants infected 
at birth (WHO, 2020; Borgia, Carleo, Gaeta, & Gentile, 2012). Further, researches show that in the top rank 
endemic countries, mother- to- child transmission occurred in most cases of infection ( Borgia et al., 2012; 
Jonas, 2009; Lavanchy, 2008).    

Currently, there is no specific treatment for acute HBV infection, only care is aimed at maintaining comfort 
and adequate nutritional balance. Chronic HBV infection can be treated with medicines and oral antiviral agents. 
Despite these drugs available, none of them can clear the infection completely, they can just stop the virus 
replication and prevent any damage of the liver.  In addition, the long period of therapy can be difficult because 
of three of side effects, compliance and the costs ( Nowak et al. , 1996) .  A great deal of HBV infection 
prevention is an introduction of hepatitis B vaccines. A vaccine against HBV has been available since 1982 and 
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Currently, there is no specific treatment for acute HBV infection, only care is aimed at maintaining comfort 
and adequate nutritional balance. Chronic HBV infection can be treated with medicines and oral antiviral agents. 
Despite these drugs available, none of them can clear the infection completely, they can just stop the virus 
replication and prevent any damage of the liver.  In addition, the long period of therapy can be difficult because 
of three of side effects, compliance and the costs ( Nowak et al. , 1996) .  A great deal of HBV infection 
prevention is an introduction of hepatitis B vaccines. A vaccine against HBV has been available since 1982 and 

it has an excellent record of safety and effectiveness.  It is now one of the most widely used vaccines in the 
world.  In many countries where between 8- 15%  of children used to become chronically infected with the 
hepatitis B virus, vaccination has reduced the rate of chronic infection to less than 1% among immunized children 
(WHO, 2020). 

Even with vaccination campaign, there is still an increase in HBV transmission globally. One of the reasons 
could be that the HBV can survive outside the body for at least seven days which during this time the virus can 
cause infection if it enters the body of unvaccinated persons (Emerenini & Inyama, 2017). Therefore, a better 
understanding of the major contributing factors to the pandemic particularly of the impact of vaccination and 
other controlling measures for HBV infection is required. 

Mathematical modeling becomes one of the powerful tools to explain the dynamical behavior of real- world 
situations and different diseases including the transmission dynamics of HBV in various regions and countries. 
Some researchers study the HBV transmission into cell level, they focus on the infection of hepatocytes.  Some 
works include immune response and some others include some drug therapy, e. g.  the work by Nowak et al. 
( 1996) , Ciupe, Ribeiro, Nelson, Dusheiko, and Perelson ( 2007) , Allali, Meskaf, and Tridane ( 2018) , 
Chenar, Kyrychko, and Blyuss (2018)  and recently Yosyingyong and Viriyapong ( 2019) .  Further, some 
researchers focus on the HBV transmission in human population.  Anderson and May ( 1991)  used a simple 
mathematical model to illustrate the effects of carriers on the transmission of HBV.  Zhao, Xu, and Lu (2000) 
proposed an age structure model to predict the dynamics of HBV transmission and evaluate the long- term 
effectiveness of the vaccination program in China. Medley, Lindop, Edmunds, and Nokes (2001) gave a model 
to show that the prevalence of infection is largely determined by a feedback mechanism that relates the rate of 
transmission, average age at infection and age- related probability of developing carriage following infection. 
Thornley, Bullen, and Roberts ( 2008)  extended the work of Medley et al.  ( 2001)  to seek for strategy for 
eliminating HBV in New Zealand in 2008. Zou, Zhang, and Ruan (2010) also proposed a mathematical model 
to understand the transmission dynamics and prevalence of HBV in mainland China.  Zhang and Zhou ( 2012) 
extended the work of Medley et al.  ( 2001)  by adding the moving out term of infected class to carrier and 
immunized class to study the spread of HBV in China. Kamyad, Akbari, Heydari, and Heydari (2014) proposed 
a mathematical model involving vertical transmission ( hepatitis B virus infection transmits directly from the 
parents to the offspring) and horizontal transmission (hepatitis B virus infection transmits through contact with 
infective individuals) with two control variables i.e. vaccination and treatment. Kimbir, Aboiyar, Abu, and Onah 
( 2014)  extended the work of Zou et al.  ( 2010)  by further assuming that the newborns to carrier mothers 
infected at birth are latently infected individuals and, therefore, they included them in the latent compartment. 
Zhang, Wang, and Zhang (2015) proposed a model to understand the transmission dynamics and prevalence of 
HBV in Xinjiang, China. 

Motivated by work mentioned above, in this paper we present the model of transmission dynamics of HBV 
infection.  We extend the work of Zhang and Zhou ( 2012)  and Kimbir et al.  ( 2014)  by adding vaccinated 
class, the factor of being immunized of newborns and some treatments. Three controls which are the percentage 
of vaccination, the treatment of chronic HBV carrier and the treatment of acute HBV infected individuals will 
be considered in two scenarios; constant parameters and control variables. Different scenarios of control variables 
are analyzed within the model to seek for the suitable guideline of vaccination and treatment in reducing the 
number of HBV infection and eliminating it eventually. 
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The paper is organized as follows.  In section 2, we inform the steps of work in the study and introduce our 
proposed model.  The results begin with model analysis which includes the boundary of solutions, the basic 
reproduction number and both disease-free and endemic equilibrium points with their stability conditions which 
are presented in section 3. Next, we propose optimal control model and then discuss some results of numerical 
simulations towards the end of section 3.  Finally, we end this paper with a brief discussion in section 4 and 
conclusion to our work in section 5. 

 
Materials and Method 

 
In this research, we start by developing a mathematical model describing HBV infection in human population, 

then we analyze the model starting from determining boundary of model solutions, the disease-free equilibrium 
point, the basic reproduction number, the local and global stability of disease-free equilibrium point, the endemic 
equilibrium point including its local and global stability.  Further, we then add control variables in our model to 
seek the best intervention strategies which could help reducing the disease transmission.  Finally, we perform 
numerical simulation to study the dynamics of HBV transmission in different scenarios of control variables. The 
formulation of our proposed model is described below.  

We propose the model which extends the work of Zhang and Zhou (2012) and Kimbir et al.  (2014) by 
adding vaccination class and some treatments.  This model includes five classes at time t , S  is the number of 
susceptible individuals, V  is the number of vaccinated individuals.  I  is the number of acute HBV infected 
individuals, C  is the number of chronic HBV carrier individuals and R is the number of immuned individuals. 
The birth rate of human is b , and k  is the proportion of births who are unvaccinated.  The susceptible and the 
vaccinated individuals become acute HBV infected individuals by the infection rate represented by the term 

1 ( ) +S I C and 2 ( ) +V I C , respectively. The parameter 1u  is the percentage of the vaccination of susceptible. 
The vaccinated move to immuned individuals class at the rate   i.e. when the vaccination for human population 
works well.  But if the vaccine efficacy wanes then vaccinated come back to susceptible individuals class at the 
rate of  .  The parameter 2u  is the efficiency of treatment of chronic carrier HBV and m  is the recovery by 
gaining natural immunity rate, causing the chronic HBV carrier move to immuned individuals class.  The 
parameter   is the proportion of births vertically infected and   is the death rate of human.  The acute HBV 
infected individuals leave their class at the rate of   with proportion of q  to the immune class and proportion 
of (1 )q−  to the chronic HBV carrier class.   is the death rate caused by infection. The term bk C  represents 
the number of newborns who become chronic HBV carrier through vertical transmission. Here we let 0 1k   
and 0 1q  . The schematic diagram of this model is shown in Figure 1. 
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Figure 1 A schematic diagram of hepatitis B virus infection dynamics 

From above description, we can write our model into a form of system of equations as follows: 

1 1(1 ) ( ) ( )dS bk C S I C V u S
dt

   = − − + + − +  

2 1(1 ) ( ) ( )dV b k V I C u S V
dt

   = − − + + − + +  

 1 2( ) ( ) ( ) (1)dI S I C V I C I
dt

   = + + + − +  

2(1 ) ( )dC bk C q I m u C
dt

   = + − − + + +  

2( ) .dR V q I m u C R
dt

  = + + + −  

The corresponding differential equations are with initial conditions (0) 0, (0) 0, (0) 0, (0) 0, (0) 0.S V I C R      
The total population size is N  where N S V I C R= + + + + . 
 

Results 
 

Boundary of solutions 
In this section, the boundary of solutions of (1) is determined. 

Since, N S V I C R= + + + + , then .  = + + + + = − −  −
dN dS dV dI dC dR

b N C b N
dt dt dt dt dt dt

(2) 

By integration both sides, we have 
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Therefore when t → , then t
b

N


→ , implies that 0 t
b

N


  . 

Thus, the considered region for this model is 5{( , , , , ) : }.
b

S V I C R N
+ =    

All solutions of this model are bounded and enter the region .  Hence,   is a positively invariant. That is 
every solution of this model remains there for all 0.t   
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The disease-free equilibrium point ( 0E ) 
The equilibrium point at which the infection is eradicated is calculated.  From ( 1) , the disease- free 

equilibrium point is as follows: 
1 0 0

0 0 0 0 0 0
1

(1 )(( ) )( , , , , ) , ,0,0, .
( )( )

( )  
       

− ++ +
= =

+ + + + +
b k u S Vb kE S V I C R

u
          (3) 

The basic reproduction number ( vR ) 
The basic reproduction number ( )vR  is the expected number of secondary cases produced by a typical 

infective individual.  To calculate ( )vR , we used the next-generation matrix method by van den Driessche and 
Watmough (2002) and we obtain  

 
1 2( ) ( )

0
S I C V I C + + + 

=  
 

   and 
2

( )
( ) (1 )

I
m u bk C q I

 
   

+ 
=  + + + − − − 

 

Then we have 
1 2 1 2

0 0
   + + 

=  
 

S V S V
F and 

2

0
.

(1 )
 

   
+ 

=  − − + + + − 
V

q m u bk
 

By substituting disease-free equilibrium point (3) in the Jacobian matrices above, we get 
1 0 2 0 1 0 2 0

0( ) ,
0 0

   + + 
=  
 

S V S V
F E 0

2

0
( ) .

(1 )
 

   
+ 

=  − − + + + − 
V E

q m u bk
 

And then 

                21

2

01 .
(1 )( )( )

m u bk
V

qm u bk
  

      
− + + + − 
=  − ++ + + + −  

 

The next generation matrix is 
1 0 2 0 2 1 0 2 0

2 2

( )( (1 ) )
1 ( )( )

0 0

S V m u q bk S V
m u bk m u bkFV

       
       

+ + + + + − − + 
−  + + + + − + + + −=  

  

. 

                   
The basic reproduction number is given by the next generation spectral radius 1( )FV − , which is 

                 1 0 2 0 2

2

( )( (1 ) )
,

( )( )
     

    
+ + + + + − −

=
+ + + + −v

S V m u q bk
R

m u bk
            (4) 

where vR  is the basic reproduction number under vaccination. Without vaccination i.e. when 
10, 0, 0u = = =  and 1k = , we then have 0R  as follows:  

                 1 2
0

2

( (1 ) )
.

( )( )

b m u q b
R

m u b

    

     

+ + + + − −
=

+ + + + −
                        (5) 

Note here that to have vR  and 0R  to be positive, we then assume 2m u b  + + +   for this model. 
Local stability of disease-free equilibrium point 

Theorem 1 (local stability at 0E ) If 1vR  , then the disease-free equilibrium point ( )0E  is locally 
asymptotically stable. If 1vR  , then the disease-free equilibrium point ( )0E is unstable. 
Proof The Jacobian matrix of (1) is 

( )
1 1 1 1

1 2 2 2

1 2 1 2 1 2

2

2

( ( )) ( ) 0
( ) 0

( ) . (6)( ) ( ) 0
0 0 (1 ) 0
0

u I C S bk S
u I C V V

J E I C I C S V S V
q bk m u

q m u

     
     

       
   
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− + + + − − + 
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 = + + + − − +
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And at 0E , we have 
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4

2

( ) 0
0

( ) , (7)0 0 0
0 0 (1 ) 0
0

A S bk S
u A V V

J E A S V
q A

q m u

   
 

 


  

− − − + 
 − − − 
 = +
 

− 
 + − 

 

where 1 1 2 3 1 0 2 0, ,A u A A S V       = + = + + = + − −  and 4 2A bk m u  = − − − − . 
From Jacobian matrix above, we set 0( ( ) ) 0det J E I− =   to find eigenvalues, then we obtain 

2 2 0 2 0 1 0 1 0

0 1 3 1 0 2 0 1 3 1 0 2 0

4 4

2 2
1 2 1 2 1 3 4 3 4 1 0 2 0

( ) ( )
( ( ) ) ( ) ( ) 0 0

0 (1 ) 0 (1 )
( )( ( ) )( ( ) ( )(1 ) ) 0.

A V V S bk S
det J E I A A S V u A S V

q A q A
A A A A u A A A A S V q

      
         

   
         

 
 
 
 
 
 

− + − − − − +
− = − − − + − + − − +

− − − −
= − − + + + − − + + − + − =

 

Thus, 1 0 = −  .  
Next, consider 2

1 2 1 2 1( ) 0A A A A u  + + + − =  and 2
3 4 3 4 1 0 2 0( ) ( )(1 ) 0A A A A S V q    − + + − + − = ,  

which is considered in the form of 2
1 2 0.a a + + =   

For 2
1 2 1 2 1( ) 0A A A A u  + + + − = , we have 1 1 2a A A= +  and 2 1 2 1a A A u = − .  

So 1 12 0,a u  = + + +  2 1 1( )( ) 0.a u u    = + + + −  We obtain that 1 0a   and 2 0a  . 
 Next, consider 2

3 4 3 4 1 0 2 0( ) ( )(1 ) 0A A A A S V q    − + + − + − = , we have
1 1 0 2 0 2 ,a S V bk m u      = − − + + − + + + +  
2 1 0 2 0 2 1 0 2 0( )( ) ( )(1 ) .a S V bk m u S V q         = + − − − − − − − + −  

Since, when 1vR  , we have 1 0 2 0 1 0 2 0

2

( ) (1 ) ( )
1,

( )( )
S V q S V

m u bk
    

      
+ − +

+ 
+ + + + + −

 i.e. 1 0 2 0( ) 1S V 
 
+


+

and 

1 0 2 0

2

(1 ) ( ) 1.
( )( )

q S V
m u bk

  
    

− +


+ + + + −
   

Consider 1 1 0 2 0 2 ,a S V bk m u      = − − + + − + + + + because 1 0 2 0S V   +  +  and with assumption 
of vR  being positive i.e. 2m u b bk   + + +   . Therefore, 1 0a  . Next, we consider 

2 1 0 2 0 2 1 0 2 0

1 0 2 0 2 2

2

( )( ) ( )(1 )
( )( (1 ) ) ( )( )

( )( )(1 ). (9)v

a S V bk m u S V q
S V m u q bk m u bk

m u bk R

         
          

    

= + − − − − − − − + −

= − + + + + + − − + + + + + −
= + + + + − −

                    

Therefore, 2 0a   when 1vR  . We obtain that 1 0a   and 2 0a   when 1vR  . 
Hence, by the criteria of Routh-Hurwitz, 0E  is locally asymptotically stable when 1vR  , and when 1vR  , 
resulting in 0E  being unstable. This completes the proof. 

The global stability of the disease-free equilibrium point 
Theorem 2 If 1vR  , the disease-free equilibrium point ( 0E ) is globally asymptotically stable. 
Proof Here, we use the method of Lyapunov functions.  
Let                          2 1 2( , , , , ) ( ) ( ) .L S V I C R m u bk I S V C    = + + + − + +   
It can be seen that L  is positive definite. Next, calculate the derivative of L  along the solutions of the model 
(1) gives 

( )( )'
2 1 2 1 2 2

2 1 2
2

2

( ) ( ) ( ) ( ) ( ) ( ) (1 ) ( )

( (1 ) )( )( )( ) 1 .
( )( )

( )            

     
    

    

= + + + − + + + − + + + − − + + + −

 + + + − + − +
= + + + − + − + + + − + 

L t m u bk S I C V I C I S V q I m u bk C

m u bk q S Vm u bk I
m u bk

 

Since bI


 , we have 2 1 2
2

2

( (1 ) )( )'(t) ( )( ) 1
( )( )

         
     
 + + + − + − +

 + + + − + − + + + − + 

m u bk q S VbL m u bk
m u bk
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1 2
2

2

1 2
2

2

2 0

( (1 ) )'(t) ( )( ) 1 ,
( )( )

( (1 ) )( )( ) 1 , 1
( )( )

( )( ) ( 1).

b m u q bkb bL m u bk S V
m u bk

b m u q bbm u bk k
m u b

bm u bk R

        
       

        
      

    


   + + + + − −
 + + + − + − +    + + + + −   

 + + + + − −
= + + + − + − = + + + + − 

= + + + − + −

 

Since 

 

 1 0 2 0 2 1 0 0 2
1 2

2 2

1 2
0 0

2

1 2

( )( (1 ) ) ( )( (1 ) ) ,
( )( ) ( )( )

( (1 ) ) ,
( )( )
( (1 ) )
(

v
S V m u q bk S V m u q bkR

m u bk m u bk

b m u q bk bS V
m u bk

b m u q b

            
         

    
      

    
 

+ + + + + − − + + + + + − −
=  

+ + + + − + + + + −

 + + + + − −
= +  + + + + −  

+ + + + − −
=

+
 

2

0

, 1

.
)( )

k
m u b

R
   

=
+ + + −

=

 

Thus, 0 .vR R  Therefore, 0E  is globally asymptotically stable when 0 1R  , leads to when 1vR  . This 
completes the proof. 

The endemic equilibrium point ( *
1E ) 

The endemic equilibrium point is denoted by * * * * * *
1 ( , , , , )E S V I C R= , where 

* * *
* 2

* * * * * *
2 1 1 2

(1 ) (1 )( ( )) ,
( ( ))( ( )) ( ( ))

b k bk C I CS
I C I C u I C

     
        

− + − + + + +
=

+ + + + + + + + + +
 

* * * **
* * *1 2

* *
22

(1 ) ( )(1 ), , ,
( )

b k u S m u C q I Vq IV C R
m u bkI C

 
      

− + + + +−
= = =

+ + + −+ + + +
 

*I  is the positive solution of ( )* 2 *
1 2 3( ) 0 10Z I Z I Z+ + =          

where 2
1 4 1 2 1 1 4 1 2 1( ((1 ) ) ( 1) ( ) ( 1) ) 0,Z bk q A N N A N        = − − − + + + −                                                     

2 4 1 2 1 1 4 1 4 2 1 1

4 2 1 4 1 1 4 2 1 1

((1 ) ) ( 1) ((1 ) )( ( )) ((1 ) )
( ) ( 1) ( ) ( )( 1) ( ) ( 1) ,

Z b q A N bk N q A bk q A u N
A N A N A N u

              
            

= − − + − − − + + − − −
+ + + + + + + + + + +

 

1 2 1 2
3

2 1

(( ) ) ( (1 ) ))( (1 ) ) .
( )( )( ( ) ( ))

b k b k u m u q bkZ
m u bk u

         
          
+ + + − + + + + + − −

=
+ + + + − + + + +

 

Local stability of the endemic equilibrium point 
Theorem 3 (local stability at *

1E ) When 1vR  , the endemic equilibrium point ( )*
1E exists and is stable if it 

satisfies the Routh-Hurwitz criteria. 
Proof From section3.6, we can see that * *0, 0S V  , * 0C   and * 0R  . Next, consider *I  from (10). 
By considering the coefficient 1 2,Z Z  and 3Z  above. It can be verified that 1 0Z  . Next when we calculate  

3vR Z− , we obtain that 3 0.vR Z− = Thus, we have 3 vZ R= , i.e. when 1vR  , we have 3 0Z  . We therefore 
see that (10) can only be expressed as either 2( ) ( ) ( ) 0ve ve ve − + − + + =  or 2( ) ( ) ( ) 0,ve ve ve − + + + + =  
and by the Descartes' rule of sign changes there is only one positive root of (10) that is, * 0I   (Eigenwillig, 
2008), i.e. *

1E  exists.  
Next, consider Jacobian matrix of endemic equilibrium point, we have  

( )
( )

* * * *
1 1 1 1

* * * *
1 2 2 2

*
* * * * * * * *1

1 2 1 2 1 2

2

2

( ) ( ) 0

( ) 0
( ) .( ) ( ) 0

0 0 (1 ) 0
0

u I C S bk S

u I C V V
J E I C I C S V S V

q bk m u
q m u

     

     

       
   

  

 − + + + − − +
 
 − + + + + − −
 =  + + + − − +
 

− − − − − 
 + − 

 

By setting *
1det( ( ) ) 0J E I− = , we have 1 = −  and 4 3 2

1 2 3 4 0 (11)a a a a   + + + + = , where 
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1 2
2

2

1 2
2

2

2 0

( (1 ) )'(t) ( )( ) 1 ,
( )( )

( (1 ) )( )( ) 1 , 1
( )( )

( )( ) ( 1).

b m u q bkb bL m u bk S V
m u bk

b m u q bbm u bk k
m u b

bm u bk R

        
       

        
      

    


   + + + + − −
 + + + − + − +    + + + + −   

 + + + + − −
= + + + − + − = + + + + − 

= + + + − + −

 

Since 

 

 1 0 2 0 2 1 0 0 2
1 2

2 2

1 2
0 0

2

1 2

( )( (1 ) ) ( )( (1 ) ) ,
( )( ) ( )( )

( (1 ) ) ,
( )( )
( (1 ) )
(

v
S V m u q bk S V m u q bkR

m u bk m u bk

b m u q bk bS V
m u bk

b m u q b

            
         

    
      

    
 

+ + + + + − − + + + + + − −
=  

+ + + + − + + + + −

 + + + + − −
= +  + + + + −  

+ + + + − −
=

+
 

2

0

, 1

.
)( )

k
m u b

R
   

=
+ + + −

=

 

Thus, 0 .vR R  Therefore, 0E  is globally asymptotically stable when 0 1R  , leads to when 1vR  . This 
completes the proof. 

The endemic equilibrium point ( *
1E ) 

The endemic equilibrium point is denoted by * * * * * *
1 ( , , , , )E S V I C R= , where 

* * *
* 2

* * * * * *
2 1 1 2

(1 ) (1 )( ( )) ,
( ( ))( ( )) ( ( ))

b k bk C I CS
I C I C u I C

     
        

− + − + + + +
=

+ + + + + + + + + +
 

* * * **
* * *1 2

* *
22

(1 ) ( )(1 ), , ,
( )

b k u S m u C q I Vq IV C R
m u bkI C

 
      

− + + + +−
= = =

+ + + −+ + + +
 

*I  is the positive solution of ( )* 2 *
1 2 3( ) 0 10Z I Z I Z+ + =          

where 2
1 4 1 2 1 1 4 1 2 1( ((1 ) ) ( 1) ( ) ( 1) ) 0,Z bk q A N N A N        = − − − + + + −                                                     

2 4 1 2 1 1 4 1 4 2 1 1

4 2 1 4 1 1 4 2 1 1

((1 ) ) ( 1) ((1 ) )( ( )) ((1 ) )
( ) ( 1) ( ) ( )( 1) ( ) ( 1) ,

Z b q A N bk N q A bk q A u N
A N A N A N u

              
            

= − − + − − − + + − − −
+ + + + + + + + + + +

 

1 2 1 2
3

2 1

(( ) ) ( (1 ) ))( (1 ) ) .
( )( )( ( ) ( ))

b k b k u m u q bkZ
m u bk u

         
          
+ + + − + + + + + − −

=
+ + + + − + + + +

 

Local stability of the endemic equilibrium point 
Theorem 3 (local stability at *

1E ) When 1vR  , the endemic equilibrium point ( )*
1E exists and is stable if it 

satisfies the Routh-Hurwitz criteria. 
Proof From section3.6, we can see that * *0, 0S V  , * 0C   and * 0R  . Next, consider *I  from (10). 
By considering the coefficient 1 2,Z Z  and 3Z  above. It can be verified that 1 0Z  . Next when we calculate  

3vR Z− , we obtain that 3 0.vR Z− = Thus, we have 3 vZ R= , i.e. when 1vR  , we have 3 0Z  . We therefore 
see that (10) can only be expressed as either 2( ) ( ) ( ) 0ve ve ve − + − + + =  or 2( ) ( ) ( ) 0,ve ve ve − + + + + =  
and by the Descartes' rule of sign changes there is only one positive root of (10) that is, * 0I   (Eigenwillig, 
2008), i.e. *

1E  exists.  
Next, consider Jacobian matrix of endemic equilibrium point, we have  

( )
( )

* * * *
1 1 1 1

* * * *
1 2 2 2

*
* * * * * * * *1

1 2 1 2 1 2

2

2

( ) ( ) 0

( ) 0
( ) .( ) ( ) 0

0 0 (1 ) 0
0

u I C S bk S

u I C V V
J E I C I C S V S V

q bk m u
q m u

     

     

       
   

  

 − + + + − − +
 
 − + + + + − −
 =  + + + − − +
 

− − − − − 
 + − 

 

By setting *
1det( ( ) ) 0J E I− = , we have 1 = −  and 4 3 2

1 2 3 4 0 (11)a a a a   + + + + = , where 

* * * * * *

1 2 1 2 1 2 2

* * * * * *

2 1 2 2 2 1 2 1

* * * * * *

2 1 2 1 2

( ) ( )

( )( (1 ) ) ( ) )

,

( ) ( ( ( )

( ) ) ( )( ( ) (

a m u bk S V I C I C u

a S V bk m u q m u bk S V I C

I C u m u bk I C I C

            

              

           

= + + + + + − − − + + + + + + + + +

= + − − − − − − + + + + + − − + + +

+ + + + + + + + + + + + − + + + +
2

* * * * * * 2 * 2 *

1 2 1 2 1 2

* * * * * *

3 1 2 2 1 2 1

* * * *

2 1 2 2

) )

(( ( ))( ( )) ( ( )) (( ) )( )

( )( (1 ) )( ( ) ( ) )

( )( )( ( ) ( )

u

I C I C u I C S V I C

a S V bk m u q I C I C u

m u bk I C I C u

  

          

           

          

+ + + +

+ + + + + + + + + + + + + +

= + − − − − − − + + + + + + + +

+ + + + + − + + + + + + + +
* * * * * * * *

1 2 1 2 1 2

* * * * * *

2 1 2 1 2

* * * *

1 2 1 1

2 *

1

)

( )(( ( ))( ( )) ( ( )))

( )(( ( ))( ( )) ( ( )))

( )( (1 ) (1 ) ( ( ( )))

(

S V I C I C u I C

mu m u bk I C I C u I C

I C bk q bk q u I C

S m

          

            

          

  

− + + + + + + + + + + +

+ + + + + + − + + + + + + + + + +

+ + − + − + + + + +

+ + + * * *

2 1 2 1 1 2

* * * * *

2 2 2 2 1 1 1 1 2

* * * *

4 1 2 2 1 2 2

2 1 1

(1 ) ) ( ( ( ))))

( (1 ) ) ( ( )) ( ( )))

( )( ( (1 ) )( ( (1 )

)( ( (

( )
u q bk S u I C

V m u q bk u I C I C

a I C S m u q bk u V m u q

bk u

        

               

         

   

+ + − − + + + + + +

+ + + + + − − + + + + + + + + + +

= + + + + + − − + + + + + −

− + + * * * *

1 1 2 2

* * * * * *

1 2 1 2

* * * * * *

2 1 2 1 2

)) ) ( )( (1 ) )

(( ( ))( ( ) ( ( )))) ( )(

)(( ( ))( ( )) ( ( ))).

I C S V bk m u q

I C I C u I C m

u bk I C I C u I C

       

            

         

+ + + + − − − − − −

+ + + + + + + + + + + + + +

+ − + + + + + + + + + +

 

By using Routh-Hurwitz criteria, *
1E  is stable if 1 3 40, 0, 0a a a    and 2 2

1 2 3 3 1 4a a a a a a + . This 
completes the proof. 

Global stability of the endemic equilibrium point 
In this section, the geometric approach of Li and Muldowney (1993) and Li and Muldowney (1996)   is 

used to analyze the global stability of the endemic equilibrium point.  The concept of the geometric approach of 
Li and Muldowney is briefly explained below. Consider the autonomous dynamical system       

                                               ( ),x f x=                                                                  (12) 
where : ,n nf →   open set and 1( )f C  . 

The following assumptions are made: (H1)   is simply connected; (H2) There exists a compact absorbing  
set  ; (H3) x  is a unique equilibrium point of (12) in  . Here is the result due to Li and Muldowney 
(1993) and Li and Muldowney (1996). 
Theorem 4 Under the assumptions (H1), (H2) and (H3), the unique equilibrium point x  of (12) is globally 

asymptotically stable int   provided the quantity 2 0q  , where 
0

2 0
0

1lim sup sup ( ( ( , ))) .
t

t x
q v B x s x ds

t→ 
=   The 

matrix B  is defined as 1 [2] 1
fB P P PJ P− −= + , where fP  is obtained by replacing the entry ijP  of P  by its 

derivative in the direction of solution of f  and [2]J  is the second additive compound matrix of Jacobian J  of 
the system (12). Further, the ( )v B  is the Lozinskii measure with respect to a vector norm ‖ ‖  in n , and 

0

1
( ) lim .

h

I hB
v B

h+→

+ −
=

‖ ‖   

Lemma 1 The system (1) is uniformly persistent in int   when 1vR  . 

Proof From section 3.5, we see that when 1vR  , we have 0dL
dt

  and when 1vR  , 0dL
dt

  which leads to 

the instability of 0E . With the result of Freedman, Ruan,  and Tang (1994) and Butler, Freedman, and Waltman 
( 1986) , we conclude that 0E  is unstable when 1vR   and hence the system is uniformly persistent in the 
interior   i.e. there exists a constant 0c   such that 

lim lim liminf ( ) , inf ( ) , inf ( ) , inflim l( ) , infi )m (
t t t t t

S t c V t c I t c C t c R t c
→ → → → →

      
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provided ( (0), (0), (0), (0), (0))S V I C R  . The uniformly persistence together with boundedness of   is 
equivalent to the existence of a compact set, which is absorbing for our model (1) in the interior of  .  
Theorem 5 The endemic equilibrium point *

1E  is globally asymptotically stable in int   when 1vR   and 
when 0b   ( b  is defined in the proof). 
Proof Since the system (1) is uniformly persistent in int   when 1vR  , therefore there exists a compact 
absorbing set   int   (Li and Muldowney, 1996). Now, since the system (1) is uniformly persistent in 
int  , then there exists a constant 0m  , independent of the initial data in int  , such that, all solutions 
( ( ), ( ), ( ), ( ), ( ))S t V t I t C t R t  of (1) satisfy              
                     inf ( ) , inf ( ) , inf ( ) , (lim lim li ) , inf ( )m lim

t t t t
S t m V t m I t m C t m R t m

→ → → →
            (13) 

provided ( (0), (0), (0), (0), (0))S V I C R  int  . 
The Jacobian matrix of (1) is  

               

( )
( )

( )
( )

1 1 1 1

1 2 2 2

1 2 1 2 1 2

2

2

( ) ( )
( )

( ) .( ) ( )
0 0 (1 )
0

u I C S bk S
u I C V V

J E I C I C S V S V
q bk m u

q m u

     
     

       
   

 

− + + + − − + 
 − + + + + − − 
 = + + + − − +
 

− − − − − 
 + 

           (14) 

Let 11 1 1 22 2 33 1 2( ), ( ), ,M u I C M I C M S V         = + + + = + + + + = + − − 44 2.M bk m u  = − − − −  
Its corresponding second compound matrix [2]J  is given by, 

                

11 22 2 2 1 1

2 11 33 1 2 1

11 44 1[2]

1 1 22 33 1 2 2

1 22 44 2

1 2 33 44

( ) ( ) 0
( ) 0 ( )

0 (1 ) 0
.

( ) 0
0 0 (1 )
0 0 ( ) 0 ( )

M M V V S bk S
I C M M S V bk S

q M M S
J

I C u M M S V V
u q M M V
I C I C M M

    
     

  
   

 
 

− + − − + 
 + − + + + 
 − − + −

=  
− + − + + 

 − − + −
 

+ + +  

                            (15) 

We let ( , , , )Q Q S V I C= = diag (1,1,1,1, , )I I . Then we have 1 diag 0,0,0,0, , .( )f
I IQ Q
I I

−  
=  Next, we determine  

1 [2] 1
fB Q Q QJ Q− −= + , which is  

1

11 22 2 2 1

1

2 11 33 1 2

11 44 1

1 2

1 1 22 33 2

1 22 44 2

1 2 33 44

( )
( ) 0

( )
( ) 0

0 (1 ) 0

( ) 0

0 0 (1 ) ( )

0 0 ( ) 0 ( ) ( )

'

'

bk S
M M V V S

I

bk S
I C M M S V

I

S
q M M

I I

S V V
I C u M M

I I

u I q I M M V

I C I I C M M

I
I

I
I

B

 
  

 
   


 

 
 

 

 

+
− + − −

+
+ − + +

− − + −

+
− + − +

− − + + −

+ + + +

=

 
















11 12

21 22

,
B B

B B
=








 
   









 

where 1
11 11 22 12 2 2 1

( )[ ( )], 0 ,bk SB M M B V V S
I

    + = − + = − −  
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provided ( (0), (0), (0), (0), (0))S V I C R  . The uniformly persistence together with boundedness of   is 
equivalent to the existence of a compact set, which is absorbing for our model (1) in the interior of  .  
Theorem 5 The endemic equilibrium point *

1E  is globally asymptotically stable in int   when 1vR   and 
when 0b   ( b  is defined in the proof). 
Proof Since the system (1) is uniformly persistent in int   when 1vR  , therefore there exists a compact 
absorbing set   int   (Li and Muldowney, 1996). Now, since the system (1) is uniformly persistent in 
int  , then there exists a constant 0m  , independent of the initial data in int  , such that, all solutions 
( ( ), ( ), ( ), ( ), ( ))S t V t I t C t R t  of (1) satisfy              
                     inf ( ) , inf ( ) , inf ( ) , (lim lim li ) , inf ( )m lim

t t t t
S t m V t m I t m C t m R t m

→ → → →
            (13) 

provided ( (0), (0), (0), (0), (0))S V I C R  int  . 
The Jacobian matrix of (1) is  

               

( )
( )

( )
( )

1 1 1 1

1 2 2 2

1 2 1 2 1 2

2

2

( ) ( )
( )

( ) .( ) ( )
0 0 (1 )
0

u I C S bk S
u I C V V

J E I C I C S V S V
q bk m u

q m u

     
     

       
   

 

− + + + − − + 
 − + + + + − − 
 = + + + − − +
 

− − − − − 
 + 

           (14) 

Let 11 1 1 22 2 33 1 2( ), ( ), ,M u I C M I C M S V         = + + + = + + + + = + − − 44 2.M bk m u  = − − − −  
Its corresponding second compound matrix [2]J  is given by, 

                

11 22 2 2 1 1

2 11 33 1 2 1

11 44 1[2]

1 1 22 33 1 2 2

1 22 44 2

1 2 33 44

( ) ( ) 0
( ) 0 ( )

0 (1 ) 0
.

( ) 0
0 0 (1 )
0 0 ( ) 0 ( )

M M V V S bk S
I C M M S V bk S

q M M S
J

I C u M M S V V
u q M M V
I C I C M M

    
     

  
   

 
 

− + − − + 
 + − + + + 
 − − + −

=  
− + − + + 

 − − + −
 

+ + +  

                            (15) 

We let ( , , , )Q Q S V I C= = diag (1,1,1,1, , )I I . Then we have 1 diag 0,0,0,0, , .( )f
I IQ Q
I I

−  
=  Next, we determine  

1 [2] 1
fB Q Q QJ Q− −= + , which is  

1

11 22 2 2 1

1

2 11 33 1 2

11 44 1

1 2

1 1 22 33 2

1 22 44 2

1 2 33 44

( )
( ) 0

( )
( ) 0

0 (1 ) 0

( ) 0

0 0 (1 ) ( )

0 0 ( ) 0 ( ) ( )

'

'

bk S
M M V V S

I

bk S
I C M M S V

I

S
q M M

I I

S V V
I C u M M

I I

u I q I M M V

I C I I C M M

I
I

I
I

B

 
  

 
   


 

 
 

 

 

+
− + − −

+
+ − + +

− − + −

+
− + − +

− − + + −

+ + + +

=

 
















11 12

21 22

,
B B

B B
=








 
   









 

where 1
11 11 22 12 2 2 1

( )[ ( )], 0 ,bk SB M M B V V S
I

    + = − + = − −  
 

2

21 1

( )
0

( )
0
0

I C

B I C





+ 
 
 
 = − +
 
 
  

and 

1
11 33 1 2

11 44 1

1 2
22 1 22 33 2

1 22 44 2

1 2 33 44

0

(1 ) 0

0

0 (1 )

0 ( ) 0 ( )

bk SM M S V
I

Sq r M M
I I

S V VB u M M
I I

Iu I q I M M V
I

II C I I C M M
I

   

 

  

 

 

+ − + + 
 
 − − + − 
 + = − +
 
  − − + + −
 
 

+ + + + 
 

. 

The Lozinskii measure of matrix B  is defined as 1 2( ) max{ , }v B g g ,                                (16)                                                
where 1 11 12( )g v B B= + ‖ ‖ and 2 21 22( )g B v B= +‖ ‖ . One can easily compute that 

1
11 11 22 12 2 1( ) ( ), 2 ,bk Sv B M M B V S

I
 

 
+

= − + = + +‖ ‖ 21 1 2 22, ( )( ), and ( )B I C v B = + +‖ ‖ is to be 

determined. Therefore, we have  1
1 11 12 11 22 2 1( ) ( ) 2 ,bk Sg v B B M M V S

I
 

 
+

= + = − + + + +‖ ‖   (17)                  

2 21 22 1 2 22( ) ( )( ) ( ).g B v B I C v B = + = + + +‖ ‖                                                                  (18) 

The matrix 22B  is now partitioned as, 11 12
22

21 22

C C
B C

C C
 

= =  
 

 where 

1
11 11 33 21 1 2[ ], 0 bk SC M M C S V

I
 

  
+ = − + = +  

,  21 1(1 ) 0 0 TC q u= − , 

 

11 44 1

1 2
22 33 2

22

1 22 44 2

1 2 33 44

0

0

(1 )

( ) 0 ( )

SM M
I I

S V VM M
I IC

Iu I q I M M V
I

II C I I C M M
I

 

 


 

 

 − + − 
 

+ − + 
=   − − + + −
 
  + + + +
 

. 

As above, we define the Lozinskii measure of matrix C  as 3 4( ) max{ , }v C g g ,                             (19)                                                        
where 3 11 12( )g v C C= + ‖ ‖  and 4 21 22( )g G v C= +‖ ‖ . Then,  

1
11 11 33 12 1 2 21 1( ) , , (1 ) ,bk Sv C M M C S V C q u

I
 

   
+

= − + = + + + = − +‖ ‖ ‖ ‖ and ( )22v C is to be 

determined. Therefore, we have 1
3 11 12 11 33 1 2( ) ,bk Sg v C C M M S V

I
 

  
+

= + = − + + + + +‖ ‖            (20)                        

4 21 22 1 22( ) (1 ) ( ).g C v C q u v C= + = − + +‖ ‖                                                                               (21)                                                     

Next, the matrix 22C  is partitioned as, 11 12
22

21 22

F F
C F

F F
 

= =  
 

where 1
11 11 44 12[ ], 0 ,SF M M F

I I
 − = − + =   

 21 1 10 ( ) TF u I I C I= + ,

1 2 2
22 33

22 22 44 2

2 22 44

(1 ) .

0 ( )

S V VM M
I I

IF q I M M V
I

II C M M
I

  

 



+ − + 
 

 = − − + + − 
  + + +
  

  

Next, we define the Lozinskii measure of matrix F  as 5 6( ) max{ , }v F g g ,                                    (22)                                                    
where 5 11 12( )g v F F= + ‖ ‖  and 6 21 22( )= +g F v F‖ ‖ . Then,  

1
11 11 44 12 21 1 1 22( ) , , ( ) ,and ( ) = − + = + = + +

Sv F M M F F u I I C I v F
I I

‖ ‖ ‖ ‖  is to be determined. Therefore,  

we have 1
5 11 12 11 44 6 21 22 1 1 22( ) , ( ) ( ) ( ). = + = − + + + = + = + + +

Sg v F F M M g F v F u I I C I v F
I I

‖ ‖ ‖ ‖  
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Further, the matrix 22F  is partitioned as 11 12
22

21 22

G G
F G

G G
 

= =  
 

 where 1 2
11 22 33 12 2[ ], ,S V VG M M G

I I
  + = − + =   

 21 (1 ) 0 TG q I= −
22 44 2

22

2 33 44( )

IM M V
IG

II C M M
I





 − + + − 
=  

 + + +  

. 

Now, we define the Lozinskii measure of matrix G  as 7 8( ) max{ , }v G g g  ,                                   (23) 
where 7 11 12( )g v G G= + ‖ ‖  and 8 21 22( )g G v G= +‖ ‖ . Then 

1 2
11 22 33 12 2 12( ) , , (1 ) . 

 
+

= − + = + = −
S V Vv G M M G G q I

I I
‖ ‖ ‖ ‖  Also 

22 22 44 2 33 44 2

*

44 1 2 2 44

44 1 2

( ) max{ ( ), }

max{ ( ) , }

sup{ ( ), 2 }.

 

       

      

 
= − + + + + + + +


= − + + + + + − − + + +


= + + − + + + − −

I Iv G M M I C M M V
I I

I IM S V V M
I I

IM S V
I

 

Thus, we have  1 2 1 2 1 2
7 11 12 22 33 22

2 ( 2 ) ( )( ) ,     + + − +
= + = − + + = + −

S V S V S V CIg v G G M M M
I I I

‖ ‖        (24)                                               

8 21 22 44 1 2( ) (1 ) sup{ ( ), 2 }       


= + = − + + + − + + + − −
Ig G v G q I M S V
I

‖ ‖ .                           (25) 

From the third equation of the system (1), we have 

                               1 2 1 2

1 2 1 2

( )

( ) .

I CS V S V
I I

I CS V S V
I I

     

     


= + − − + +


− + = + − −

   (26) 

Substituting (26), in (24), we have 
1 2 1 2 1 2

7 22 1 2 22
2 ( 2 ) ( )( ) .     

 
 + + − +

= − + − + + = + −
S V S V S V CI C Ig M S V M

I I I I I
    (27)                                                

Thus, 
7 8

1 2 1 2
22 44 1 2

1 2 1 2
22 44 1 2

( ) max{ , }
( 2 ) ( )max{ , (1 ) sup{ ( ), 2 }}

( 2 ) ( )max , (1 ) sup{ ( ), 2 } .(28){ }

   
       

   
       


 + − +

= + − + − + + − + + + − −

 + − +
= + − − + + − + + + − −

v G g g
S V S V CI IM q I M S V

I I I
S V S V CI M q I M S V

I I

Now from (22), 5 6( ) max{ , },v F g g where 1
5 44 11

 +
= + −

Sg M M
I

 and 6 1 1 22[ ( )] ( ),= + + +g u I C I v F

we consider 1 1
5 44 11 44 11 .      + +
= + − + − = + + − −

S SI I I Ig M M M M
I I I I I I

 
Therefore, 

1 1 2 1 2
44 11 1 1 22

1 1 44 1 2

( 2 ) ( )( ) max ,( ( )) ,

( ( ) (1 ) ) sup{ ( ), 2 } .

{
}

     


        

 + + − +
 + + − − + + + −

+ + + − + + − + + + − −

S S V S V CI Iv F M M u I C I M
I I I I
u I C q I M S V

 

Now from (19), 3 4( ) max{ , },v C g g where 
1

3 11 33 1 2 4 1 22, (1 ) ( ), 
   

+
= − + + + + + = − + +

bk Sg M M S V g q u v C
I

 

we consider 1
3 33 1 2 11 0 

  
+

= + + + + − +
bk Sg M S V M

I
 

                    1
33 1 2 11 . 

  
 +

= + + + + + − −
bk SI M S V M

I
I
II
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Therefore, 1
33 1 2 11( ) max ,{  

  
 +

 + + + + + − −
bk SI Iv C M S V M

I I I
 

1 1 2 1 2
1 44 11 1 1 1 22

( 2 ) ( )(1 ) , (1 ) ( ( )) ,     
  

+ + − +
− + + + − − − + + + + + −

S S V S V CIq u M M q u u I C I M
I I I

 

1 1 1 44 1 2(1 ) ( ( ) (1 ) ) sup{ ( ), 2 } .}         − + + + + + − + + − + + + − −q u u I C q I M S V  
Now from (16), 1 2( ) max{ , },v B g g where  

1
1 11 22 2 1 2 1 2 22( ) 2 , ( )( ) ( ), 

   
+

= − + + + + = + + +
bk Sg M M V S g I C v B

I
 we consider  

1 1
1 2 1 11 22 2 1 11 222 ( ) 0 2 ( ) .   

   
 + +

= + + − + + = + + + − + −
bk S bk SI Ig V S M M V S M M

I I I I
 

Therefore, 1( ) max{2 ( ) ,2 1 11 22
bk SI I

v B V S M M
I I I

 
 

+ 
 + + + − + −  

                  

1( )( ) ,1 2 33 1 2 11

1( )( ) (1 ) ,1 2 1 44 11

( 2 ) ( )1 2 1 2( )( ) (1 ) ( ( )) ,1 2 1 1 1 22

( )( ) (1 ) ( ( ) (1 ) )1 2 1 1 1 44
su

bk S I
I C M S V M

I I
S I

I C q u M M
I I

S V S V C
I C q u u I C I M

I
I C q u u I C q I M

 
    

 
  

   
   

    

+ 
+ + + + + + + − −

+ 
+ + + − + + + − −

+ − +
+ + + − + + + + + −

+ + + − + + + + + − +

+ p{ ( ), 2 }}.1 2S V      − + + + − −

                              

Hence, we obtain ( ) ,


 −
Iv B b
I

 where 

1 1min{ 2 ( ) , ( )( )2 1 11 22 1 2 33 1 2

1, ( )( ) (1 ) , ( )( ) (1 )11 1 2 1 44 11 1 2 1

( 2 ) ( )1 2 1 2( ( )) , ( )1 1 22 1 2

bk S bk SI
b V S M M I C M S V

I I I
SI I

M I C q u M M I C q u
I I I

S V S V C
u I C I M

I

   
      

 
     

   
  

+ +
= − − − + + + − + + − − − − −

+ 
+ + − + + − − − − − + + − + + − − −

+ + +
− + + − + − + ( ) (1 ) ( ( )1 1 1

(1 ) ) inf{( ), 2 }}.44 1 2

I C q u u I C

q I M S V

 

       

+ − − − − + +

+ − − − + + − + + +

 

Let us consider any solution ( ), ( ), ( ), ( )S t V t I t C t  emanating from the compact absorbing set  . Let t  be 
large enough such that the system is persistent and ( ( ), ( ), ( ), ( ))  S t V t I t C t  for all t t . Then along each 

solution ( ), ( ), ( ), ( )S t V t I t C t  such that ( (0), (0), (0), (0))S V I C , for t t , 1[ln ( ) ln (0)]
2

− 
bI t I

t
.  

As a result, 
0 0

1 1 1 ln ( ) ln (0)( ) ( ) ((ln ( ) ln (0)) ) ,
2

 −
 − = − − = −  − 

t t I I t I bv B ds b ds I t I bt b
t t I t t

which implies 

2 0
2

 − 
bq . Hence, by Theorem 4, *

1E  is globally asymptotically stable in int  when 1vR   and 0b  . 
This completes the proof. 

Extension of the model into an optimal control model 
In this section, we extend model (1) by applying optimal control variables in the model, this is to determine 

the best intervention strategies that help eradicating the disease in the specified time. The optimal control model 
includes three control variables defined as (i) 1( )u t  is the prevention by vaccination, (ii) 2( )u t  is a treatment 
effort of chronic HBV carrier individuals, and (iii) 3( )u t  is a treatment effort of acute infected individuals. 
The model is written as follows:  

Further, the matrix 22F  is partitioned as 11 12
22

21 22

G G
F G

G G
 

= =  
 

 where 1 2
11 22 33 12 2[ ], ,S V VG M M G

I I
  + = − + =   

 21 (1 ) 0 TG q I= −
22 44 2

22

2 33 44( )

IM M V
IG

II C M M
I





 − + + − 
=  

 + + +  

. 

Now, we define the Lozinskii measure of matrix G  as 7 8( ) max{ , }v G g g  ,                                   (23) 
where 7 11 12( )g v G G= + ‖ ‖  and 8 21 22( )g G v G= +‖ ‖ . Then 

1 2
11 22 33 12 2 12( ) , , (1 ) . 

 
+

= − + = + = −
S V Vv G M M G G q I

I I
‖ ‖ ‖ ‖  Also 

22 22 44 2 33 44 2

*

44 1 2 2 44

44 1 2

( ) max{ ( ), }

max{ ( ) , }

sup{ ( ), 2 }.

 

       

      

 
= − + + + + + + +


= − + + + + + − − + + +


= + + − + + + − −

I Iv G M M I C M M V
I I

I IM S V V M
I I

IM S V
I

 

Thus, we have  1 2 1 2 1 2
7 11 12 22 33 22

2 ( 2 ) ( )( ) ,     + + − +
= + = − + + = + −

S V S V S V CIg v G G M M M
I I I

‖ ‖        (24)                                               

8 21 22 44 1 2( ) (1 ) sup{ ( ), 2 }       


= + = − + + + − + + + − −
Ig G v G q I M S V
I

‖ ‖ .                           (25) 

From the third equation of the system (1), we have 

                               1 2 1 2

1 2 1 2

( )

( ) .

I CS V S V
I I

I CS V S V
I I

     

     


= + − − + +


− + = + − −

   (26) 

Substituting (26), in (24), we have 
1 2 1 2 1 2

7 22 1 2 22
2 ( 2 ) ( )( ) .     

 
 + + − +

= − + − + + = + −
S V S V S V CI C Ig M S V M

I I I I I
    (27)                                                

Thus, 
7 8

1 2 1 2
22 44 1 2

1 2 1 2
22 44 1 2

( ) max{ , }
( 2 ) ( )max{ , (1 ) sup{ ( ), 2 }}

( 2 ) ( )max , (1 ) sup{ ( ), 2 } .(28){ }

   
       

   
       


 + − +

= + − + − + + − + + + − −

 + − +
= + − − + + − + + + − −

v G g g
S V S V CI IM q I M S V

I I I
S V S V CI M q I M S V

I I

Now from (22), 5 6( ) max{ , },v F g g where 1
5 44 11

 +
= + −

Sg M M
I

 and 6 1 1 22[ ( )] ( ),= + + +g u I C I v F

we consider 1 1
5 44 11 44 11 .      + +
= + − + − = + + − −

S SI I I Ig M M M M
I I I I I I

 
Therefore, 

1 1 2 1 2
44 11 1 1 22

1 1 44 1 2

( 2 ) ( )( ) max ,( ( )) ,

( ( ) (1 ) ) sup{ ( ), 2 } .

{
}

     


        

 + + − +
 + + − − + + + −

+ + + − + + − + + + − −

S S V S V CI Iv F M M u I C I M
I I I I
u I C q I M S V

 

Now from (19), 3 4( ) max{ , },v C g g where 
1

3 11 33 1 2 4 1 22, (1 ) ( ), 
   

+
= − + + + + + = − + +

bk Sg M M S V g q u v C
I

 

we consider 1
3 33 1 2 11 0 

  
+

= + + + + − +
bk Sg M S V M

I
 

                    1
33 1 2 11 . 

  
 +

= + + + + + − −
bk SI M S V M

I
I
II
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1 1

2 1

1 2

3 2

3 2

(1 ) ( ) ( ( ))

(1 ) ( ) ( ) ( )

( ) ( ) ( )

(1 ( )) ( ( ))

( ) ( ( )) .

   

   

   

   

  

= − − + + − +

= − − + + − + +

= + + + − +

= + − − + + +

= + + + −

dS bk C S I C V u t S
dt
dV b k V I C u t S V
dt
dI S I C V I C I
dt
dC bk C u t I m u t C
dt
dR V u t I m u t C R
dt

                                                        (29) 

The control set U  is Lebesgue measurable and it is defined as 
2 21 2 3 1 1 3 3{( ( ), ( ), ( )) : 0 ( ) ( ) 1,0 ( ) ( ) 1,0 ( ) ( ) 1,0 }.maxmax maxU u t u t u t u t u t u t u t u t u t t T=           

The goal is to reduce the population number of acute infected individuals and the population number of chronic 
HBV carrier individuals. The objective function is constructed as 

2 2 2
1 1 2 1 3 2 4 2 5 3 6 30 [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))] ,= + + + + + + +

TJ I t C t M u t S t M u t M u t C t M u t M u t I t M u t dt    (30)             
where 1 2 3 4 5, , , ,M M M M M  and 6M  are positive constants. The expression 2

1 1 2 1( ) ( ) ( )+M u t S t M u t  represents 
costs associated with 1u  and 2

3 2 4 2( ) ( ) ( )+M u t C t M u t  represents cost associated with 2u  and
2

5 3 6 3( ) ( ) ( )+M u t I t M u t  represents cost associated with 3u . 
All parameters’ definitions are the same as stated in section 2. The model is analyzed basing on the theory of 
Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko (1986). For the optimal control model, the objective 
of the model is given by:

( )* * * 2 2 2
1 2 3 1 1 2 1 3 2 4 2 5 3 6 3

0
( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .= + + + + + + +

T
J u u u min I t C t M u t S t M u t M u t C t M u t M u t I t M u t dt                                                                                                                                                                          

                (31) 
Next, by applying Pontryagin’s Maximum Principle (PMP), we give the necessary conditions for an optimal 
control problem. Therefore, we obtained a Hamiltonian ( H ) function defined as: 

1 2 3( , , , , ) ,    = + + + + +S V I C R
dS dV dI dC dRH L I C u u u
dt dt dt dt dt

 where 
2 2 2

1 2 1 1 2 1 3 2 4 2 5 3 6 3
( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .[ ]= + + + + + + +L y u u I t C t M u t S t M u t M u t C t M u t M u t I t M u t       (32) 

Thus, we obtain a Hamiltonian function as follows 
2 2 2

1 1 2 1 3 2 4 2 5 3 6 3

1 1

2 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(1 ( )) ( )( ( ) ( )) ( ) ( ( )) ( )

(1 ) ( )( ( ) ( )) ( ) ( ) ( ) ( )

( )( ( ) ( ))

( )
( )
(

    

    

 

= + + + + + + +

+ − − + + − +

+ − − + + − + +

+ +

S

V

I

H I t C t M u t S t M u t M u t C t M u t M u t I t M u t

bk C t S t I t C t V t u t S t

b k V t I t C t u t S t V t

S t I t C t 2

3 2

3 2

( )( ( ) ( )) ( ) ( )

( ) (1 ( )) ( ) ( ( )) ( )

( ) ( ) ( ) ( ( )) ( ) ( )

)
( )
( )

  

    

   

+ + − +

+ + − − + + +

+ + + + −

C

R

V t I t C t I t

bk C t u t I t m u t C t

V t u t I t m u t C t R t

                        (33) 

where , ,  S V I , C  and R  are the adjoint variable functions to be determined suitably by applying 
Pontryagin's Maximum Principle of the optimal control. 
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For an optimal control set 1 2 3, ,u u u  that minimizes J  over U , there are adjoint variables, , ,  S V I , C  
and R  such that:     

1 1 1 1 1 1

2 2

5 3 1 2 1 2 3 3

( ) ( ( ( ) ( )) ( ( ))) ( ) ( ( ) ( ))

( ( ) ( )) ( ) ( ( ) ( ))

1 ( ) ( ) ( ) ( ) ( ) ( ) (1 ( )) ( )

[ ]
[ ]
[

      

          

            

 = − − + + + + + +

 = − − + − + + + + +

 = − + − − + + − + + − +

S s v I

V S V V I R

I S V I I I C

M u t I t C t u t u t I t C t

I t C t I t C t

M u t S t V t S t V t u t u t

3 2 1 2 1 2

2 2

1 ( ) ( ) ( ) ( ) ( )

( ( )) ( ) ,

]
[

]
[ ].



          

    

 

 = − + − − − + + +

− + + + + +

 = − −

R

C S S V I I C

C R R

R R

M u t bk S t V t S t V t bk

m u t u t m

  (34) 

 
With transversality conditions,  ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0.    = = = = =S V I C RT T T T T                              (35)                                      
Furthermore, we obtain the control set ( * * *

1 2 3, ,u u u ) characterized by 
 

* * *
1 1 1 2 2 2 3 3 3( ) {0, ( , )}, ( ) {0, ( , )}, ( ) {0, ( , )},= = =max max maxu t max min u u u t max min u u u t max min u u  

where 1 3 5
1 2 3

2 4 6

( ) ( ) ( ) ( ) ( ) ( )
, , .

2 2 2
      − − − − − −

= = =S V C R C RM S t M C t M I t
u u u

M M M
 

The form of adjoint equation and transversality condition are standard results from Pontryagin's Maximum 
Principle. We differentiate Hamiltonian function (33) with respect to , , ,S V I C  and R , respectively, and then 
the adjoint system can be written

1 1 1 1 1 1

2 2

5 3 1 2 1 2

( ) ( ( ( ) ( )) ( ( ))) ( ) ( ( ) ( ))

( ( ) ( )) ( ) ( ( ) ( ))

1 ( ) ( ) ( ) ( ) ( ) ( )

[ ]

[ ]

[

S s v I

V S V V I R

I S V I I I

H M u t I t C t u t u t I t C t
S
H I t C t I t C t
V
H M u t S t V t S t V t
I

      

          

           

 = − = − − + + + + + +

 = − = − − + − + + + + +

 = − = − + − − + + − + +
 3 3

3 2 1 2 1 2

2 2

(1 ( )) ( )

1 ( ) ( ) ( ) ( ) ( )

( ( )) ( )

]

[
]

C R

C S S V I I

C C R R

u t u t

H M u t bk S t V t S t V t
C

bk m u t u t m

 

         

     

− +

 = − = − + − − − + +


+ − + + + + +

 

. (36)[ ]R R
H
R

  = − = − −


 

Similarly, by the approach of Pontryagin et al. (1986) , we solved the equation, 0
=

 i

H
u

 at *
iu , for 1, 2,3=i  

and obtain: 
1

1 2 1 1
1 2

3
3 4 2 2

2 4

( ) ( )
( ) 2 ( ) ( ) ( ) 0

2
( ) ( )

( ) 2 ( ) ( ) ( ) 0
2

S V
S V

C R
R C

M S tH M S t M u t S t S t u
u M

M C tH M C t M u t C t C t u
u M

 
 

 
 

− −
= + − + =  =


− −

= + + − =  =


 

5
5 6 3 3

3 6

( ) ( )
( ) 2 ( ) ( ) ( ) 0 .

2
C R

C R
M I tH M I t M u t I t I t u

u M
  

   
− −

= + − + =  =


                                 (37) 

By using standard control arguments involving the bounds on the controls, we conclude
* 1
1 1

2

( ) ( )
( ) max 0,min , .

2
{ ( )} − −

= S V
max

M S t
u t u

M
                                                               (38)       

* 3
2 2

4

( ) ( )
( ) max 0,min , .

2
{ ( )} − −

= C R
max

M C t
u t u

M
                                                                   (39)  

1 1

2 1

1 2

3 2

3 2

(1 ) ( ) ( ( ))

(1 ) ( ) ( ) ( )

( ) ( ) ( )

(1 ( )) ( ( ))

( ) ( ( )) .

   

   

   

   

  

= − − + + − +

= − − + + − + +

= + + + − +

= + − − + + +

= + + + −

dS bk C S I C V u t S
dt
dV b k V I C u t S V
dt
dI S I C V I C I
dt
dC bk C u t I m u t C
dt
dR V u t I m u t C R
dt

                                                        (29) 

The control set U  is Lebesgue measurable and it is defined as 
2 21 2 3 1 1 3 3{( ( ), ( ), ( )) : 0 ( ) ( ) 1,0 ( ) ( ) 1,0 ( ) ( ) 1,0 }.maxmax maxU u t u t u t u t u t u t u t u t u t t T=           

The goal is to reduce the population number of acute infected individuals and the population number of chronic 
HBV carrier individuals. The objective function is constructed as 

2 2 2
1 1 2 1 3 2 4 2 5 3 6 30 [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))] ,= + + + + + + +

TJ I t C t M u t S t M u t M u t C t M u t M u t I t M u t dt    (30)             
where 1 2 3 4 5, , , ,M M M M M  and 6M  are positive constants. The expression 2

1 1 2 1( ) ( ) ( )+M u t S t M u t  represents 
costs associated with 1u  and 2

3 2 4 2( ) ( ) ( )+M u t C t M u t  represents cost associated with 2u  and
2

5 3 6 3( ) ( ) ( )+M u t I t M u t  represents cost associated with 3u . 
All parameters’ definitions are the same as stated in section 2. The model is analyzed basing on the theory of 
Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko (1986). For the optimal control model, the objective 
of the model is given by:

( )* * * 2 2 2
1 2 3 1 1 2 1 3 2 4 2 5 3 6 3

0
( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .= + + + + + + +

T
J u u u min I t C t M u t S t M u t M u t C t M u t M u t I t M u t dt                                                                                                                                                                          

                (31) 
Next, by applying Pontryagin’s Maximum Principle (PMP), we give the necessary conditions for an optimal 
control problem. Therefore, we obtained a Hamiltonian ( H ) function defined as: 

1 2 3( , , , , ) ,    = + + + + +S V I C R
dS dV dI dC dRH L I C u u u
dt dt dt dt dt
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2 2 2
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Thus, we obtain a Hamiltonian function as follows 
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3 2
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                        (33) 

where , ,  S V I , C  and R  are the adjoint variable functions to be determined suitably by applying 
Pontryagin's Maximum Principle of the optimal control. 
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max

M I t
u t u

M
                                                              (40) 

This completes the proof. 
Numerical simulation 
In this section, we show some numerical solutions on the optimal control model (29). We apply the Euler 

method to compute the optimality control solution consisting of the state equations (29) and the adjoint system 
(34). The parameters within this model are chosen as appropriate and are shown in Table 1 and we consider 
the entire period of 10T =  weeks.  

 
 

Table 1 Parameter values of the model used in numerical study 

Parameter Description Value Ref 
 The birth rate of human 0.0121 Zou et al. (2010) 
 Transmission rate of susceptible individuals 0.8-20.94 Edmunds, Medley, and 

Nokes (1996a) 
 Transmission rate of vaccinated individuals 1 Edmunds et al. (1996a) 

 The proportion of births vertically infected 0.11 Edmunds et al. (1996a) 
 The percentage of the vaccination of susceptible 0.5 assume 

 The efficiency of treatment of chronic carrier HBV 0.5 assume 

 The vaccine efficacy wanes rate 0.5 Edmunds, Medley, and 
Nokes (1996b) 

 The vaccinated move to immune individuals rate 0.97 Mendy et al. (2013) 
 The death rate of human 0.00693 Zou et al. (2010) 

 The rate of acute infected individuals leave their class 4 Edmunds et al. (1996a) 
 The proportion of the acute infected move to immune class 0.885 WHO (2002) 
 The recovery by gaining natural immunity rate 0.005-0.025 Eikenberry, Hews, Nagy, and 

Kuang (2009) 
 The death rate caused by infection 0.47 Nowak and May (2000) 

 The proportion of births who are unvaccinated 0.5 assume 
 

Control with vaccination only 
Under this strategy, we use the control 1u  to optimize the objective function while 2u and 3u  is set to zero. 

Figure 2 shows that the number of susceptible individuals remains unchanged whereas there is a slightly increase 
in the number of vaccinated individuals.  In addition, the number of both acute infected and chronic carrier 
individuals decreases with a lower peak whereas a large increase in immune individuals is obtained.   Figure 2 
( f)  shows the strategy of 1u  that we need to give 1u  at 0 . 7  (=  70%)  for about 9 weeks and gradually 
decreases to zero at the 10th  week.  
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(d)                  (e)      (f) 

Figure 2 Simulation results of the HBV model (29) with one control ( 1u  = 70%, 2u  = 0, 3 0u = ) and without control. (a) 
the number of susceptible individuals, ( b)  the number of vaccinated individuals, ( c)  the number of acute infected 
individuals, ( d)  the number of chronic HBV carrier individuals, ( e)  the number of immune individuals and ( f)  the 
strategy guideline of controls 

 
Control with treatment of chronic carrier individuals only 
Under this strategy, we use the control 2u  alone to optimize the objective function.  With the control the 

number of susceptible individuals increased after the 3rd  week.  The number of vaccinated and acute infected 
individuals remains unchanged.  However, with the control 2u , it leads to a dramatic decrease in number of 
chronic carrier individuals and reaches zero level faster which is in the 6th  week, and it leads to a large increase 
in number of immune individuals by approximately 40%.  Figure 3 ( f)  shows that we need to give 2u  at 
maximum level of 70% for about 9 weeks and gradually reduces to zero. 

 
Control with treatment of acute infected individuals only 
Under this strategy, we use the control 3u  alone to optimize the objective function. The results show that 

the treatment of acute infected individuals does not significantly affect the number of susceptible and vaccinated 
individuals. Interestingly, it gives a slightly decrease in number of acute infected and a dramatic decrease in 
number of chronic carrier individuals by about 30%, whereas it reaches zero level after 10th  week. Further, 
this strategy also leads to a large increase in number of immune individuals. Figure 4 (f) shows that we need to 
give 3u  at maximum level of 70% for almost all the time. 
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Figure  3 Simulation results of the HBV model (29) with one control ( 1u  = 0, 2u  = 70%, 3 0u = ) and without control. (a) 
the number of susceptible individuals, ( b)  the number of vaccinated individuals, ( c)  the number of acute infected 
individuals, ( d)  the number of chronic HBV carrier individuals, ( e)  the number of immune individuals and ( f)  the 
strategy guideline of controls 
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Figure  4 Simulation results of the HBV model (29) with one control ( 1u  = 0, 2u =0, 3u =70%) and without control. (a) the 
number of susceptible individuals, (b) the number of vaccinated individuals, (c) the number of acute infected individuals, 
(d) the number of chronic HBV carrier individuals, (e) the number of immune individuals and (f) the strategy guideline 
of controls 
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Figure  4 Simulation results of the HBV model (29) with one control ( 1u  = 0, 2u =0, 3u =70%) and without control. (a) the 
number of susceptible individuals, (b) the number of vaccinated individuals, (c) the number of acute infected individuals, 
(d) the number of chronic HBV carrier individuals, (e) the number of immune individuals and (f) the strategy guideline 
of controls 

Control with vaccination, treatment of chronic carried individuals and treatment of acute infected 
individuals 

Under this strategy, we use all three controls to optimize the objective function.  The results in Figure 5 
demonstrate a slight increase in number of susceptible and vaccinated individuals, whereas they give a reduction 
in the peak of number of acute infected individuals. Further, this strategy leads to a dramatic decrease in number 
of chronic carrier individuals by approximately 35% and it reaches zero level faster than the previous three cases 
i.e. in the 4th  week. The number of immune individuals also largely increases by 55%. Finally, the guideline 
of these three controls suggests that we need to perform the control 1u  at the level of 70% for about 2.5 weeks 
and gradually reduces the level to zero by the 8th  week, whereas we need to perform the control 2u  and 3u  at 
the level of 70% for about 9 and 9.5 weeks, respectively. 
 

(a)           (b)             (c) 

 
(d)           (e)             (f) 

 

Figure  5 Simulation results of the HBV model (29) with all controls ( 1u  = 70%, 2u =70%, 3u =70%) and without control. 
(a) the number of susceptible individuals, (b) the number of vaccinated individuals, (c) the number of acute infected 
individuals, ( d)  the number of chronic HBV carrier individuals, ( e)  the number of immune individuals and ( f)  the 
strategy guideline of controls 
 

Discussion 
 
     With our numerical results above we could see that Figure 2 demonstrates that with vaccination control alone, 
a number of both acute HBV infected and chronic HBV carrier is reduced whereas a number of immuned 
individuals is increased.  In Figure 3, with treatment of chronic HBV carrier individuals alone the results show 
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that a number of chronic HBV carrier is significantly reduced and a number of immuned individuals increases 
although there is no significant change in number of acute HBV infected.  Interestingly, the results of scenario 
with treatment of acute HBV infected individuals alone in Figure 4 lead to a significant decrease in the number 
of chronic HBV carrier and a significant increase in the number of immuned individuals whereas only a small 
reduction is observed for the number of acute HBV infected.  This could interpret that treatment of acute HBV 
infected individuals is essential and gives significant results in eradicating HBV transmission.  Finally, a 
combination of all three controls in Figure 5 gives the best result comparing to the previous three cases i.e. there 
is a great reduction in acute HBV infected and a significant reduction in chronic HBV carrier whereas a large 
increase in immuned individuals. This confirms that all three controls should be encouraged and support in order 
to eventually eliminate the HBV transmission in human.  
 

Conclusions  
 

In this paper, a nonlinear mathematical model relating to vaccination class of population, vertical transmission 
of newborns and treatment of both acute HBV infected individuals and chronic HBV carriers is presented in 
order to investigate the dynamics of HBV transmission.  The highlights of this model are that the model allows 
population in susceptible group to be able to take some vaccine and move to vaccinated class, the model divides 
the infected individuals into two types i.e. acute and chronic carriers, the vertical transmission is included in the 
model and some treatments for both acute and chronic carries are also included. With these highlights, our model 
therefore is more realistic than the model of Zhang and Zhou (2012) and Kimbir et al. (2014) that we have 
extended, therefore stronger results. Within the model two main equilibria are obtained and the magnitude of the 
basic reproduction number becomes the threshold of the qualitative behaviors of the model.  When the basic 
reproduction number is less than one, the disease- free equilibrium is locally and globally stable, whereas it is 
unstable when the basic reproduction number is greater than one and the infection is uniformly persistent.  By 
using the geometric approach of Li and Muldowney (1993)  and Li and Muldowney (1996) , we obatin that 
the endemic equilibrium is globally stable.  Further, the model above is extended into optimal control model by 
adding three control variables which are prevention by vaccination, treatment of acute infected and treatment of 
chronic HBV carriers to minimize the transmission of HBV.  Numerical simulations of the model show that 
among three controls, treatment of acute infected individuals gives the best impact in reducing the HBV infection. 
However, combination of three controls gives the best strategy for overall HBV infection reduction. 
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