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Abstract 
In this paper, Laplace Differential Transform Method (LDTM)  is employed in solving two- dimensional partial differential 

equations with variable coefficients. Laplace Differential Transform Method (LDTM) combines Laplace transform and Differential 
Transform Method (DTM)  and can be used to effectively solve 2-D partial differential equations.  In order to demonstrate the 
effectiveness of this method, 2-D heat- like equations and wave- like equation were considered.  Results revealed that the LDTM 
is effective and efficient in handling 2-D homogeneous and nonhomogeneous partial differential equations with little computational 
effort. 

Keywords:   Nonhomogeneous PDE, 2-D PDE, Laplace Differential Transform Method, Laplace Transform, Differential Transform 
Method 

Introduction 

Evolution equations have attracted a lot of attention over the past five decades due to its broad applications 
in areas such as Biomathematics, engineering, fluid dynamics, chemistry etc.  Although most of these equations 
do not have an analytical solution, researchers have either been using numerical or approximate methods to solve 
these problems.  However, these methods are computationally intensive as it involves a lot of numerical 
computations, approximations and manipulations. Consequently, researchers are recently working to develop new 
methods to solve these problems.  

Among these methods, we have Homotopy Perturbation Method (Alquran & Mohammad, 2011; He, 2006; 
Moghimi, Ganji, Bararnia, Hosseini, & Jalaal, 2011) , Homotopy Analysis Method ( Islam, Khan, Faraz, & 
Austin, 2010; Jafari, Chun, Seifi, & Saeidy 2009) and Differential transform method (Al-Ahmad, Mamat, & 
AlAhmad, 2020; Ganji, Jouya, Mirhosseini-Amiri, & Ganji, 2016; Ghafoori et al., 2011; Zou, Zong, Wang, 
& Wang, 2010)  to mention a few.  The aforementioned methods have effectively been used to solve one-
dimensional evolution equations. But, when it comes to two-dimensional evolution equations, it’s very tedious, 
so, most studies in the literature focus on one-dimensional evolution equations. Although, Differential transform 
method has been used to solve two dimensional PDEs. The concept of Differential transform was first introduced 
by Zhou (1986) and applied to solve initial value problems in electric circuit analysis.  Many researchers have 
contributed to literature using this method ( Al- Ahmmad et al. , 2020; Ganji et al. , 2016; Ghafoori et al. , 
2011; Zou et al. , 2010) .  However, using Differential transform to solve two- dimensional evolution partial 
differential equations becomes more complicated.  Hence, the need to combine another method to effectively 
solve any two-dimensional evolution partial differential equations. 
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In this paper, Laplace Differential transform method ( LDTM) , which combines Laplace transform and 
Differential Transform Method (DTM) , is used to solve the 2- dimensional heat- like equation and wave- like 
equation, with the aim of showing the reliability of this method in proffering an exact solution of two dimensional 
homogeneous and non-homogenous PDEs.  

The present paper has been organized as follows:  in section 2, basic definitions of DTM and the basic idea 
of LDTM. In section 3, we present three examples in form of 2-D heat-like equation and wave-like equation. 
In section 4, the conclusion follows. 

 
Methods and Materials 

 
Solution Formulations and Definitions 

In this section, basic definitions of semi-analytical method DTM for better understanding of LDTM are 
introduced as follows: 
Overview of 2D Differential Transform Method (DTM) 

The differential transform method constructs a semi-analytical numerical technique that applies Taylor series 
to the solution of differential equations in the form of polynomials. 

Considering 𝑤̅𝑤(𝑥𝑥,𝑦𝑦) as an analytical and continuously differentiable function, the differential transformation 
of the 𝑘𝑘 + ℎth derivative of the function 𝑤̅𝑤(𝑥𝑥,𝑦𝑦) is defined as follows: 
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Where 𝑤̅𝑤(𝑥𝑥,𝑦𝑦) is the original function and 𝑊𝑊(𝑘𝑘, ℎ), the spectrum function is the transformed function. The 
differential inverse transformation of 𝑊𝑊(𝑘𝑘, ℎ) can be defined in the following form: 
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Equating (𝑥𝑥0, 𝑡𝑡0) as (0,0), equation (2) can be written in the form: 
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The function 𝑤̅𝑤(𝑥𝑥, 𝑦𝑦) can be represented by a finite series: 
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𝑅𝑅𝑘𝑘ℎ is the remainder term, for which the values of 𝑎𝑎 and 𝑏𝑏 are obtained by convergence of the series 
coefficients.  
Property 1(Two-Dimensional Differential Transform Properties): The basic operations of the two dimensional 
transform which are useful in the transformation in this paper are summarized as follows: (Ganji et al., 2016; 
Tari & Shahmorad, 2011) 
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Basic Idea of Two-dimensional LDTM 

To illustrate the basic idea of this method, we consider the general form of two-dimensional second order 
nonhomogeneous partial differential equations with variable coefficients of the form: 
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Where ( , )na x y  is the variable coefficients, 𝑛𝑛 ∈ ℕ, R  is the linear operator and ( , , )f x y t  is the source 
function. 

With the initial conditions 

 1 2( , ), ( , ,( , ,0) 0) ( , )tx y ww x y g x y g x y    (8) 
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The method involves applying a Laplace transform to equation  (7) –(8) and the use of the linearity property 
of Laplace transform  
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Where ( , , )w x y s  is the Laplace transform of ( , , )w x y t . 
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Accordingly, using differential transform method, the solution of equations (10)  can be written as: 
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𝑊𝑊(𝑘𝑘, ℎ) represents the differential transform of ( , , )w x y s  and ( , )W k h  is a function of the parameter s . 

After determining ( , , )w x y s , inverse Laplace transform is applied to equation (11) to get ( , , )w x y t  that is 
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Application of this Method 
 
Here, Illustrative examples are considered to demonstrate the applicability of using Laplace Differential 

Transform Method (LDTM) in solving 2 dimensional heat-like equation and wave-like equation.   
Example 1 
Consider the following 2-dimensional heat-like equation with variable coefficient given by (Neog, 2015): 
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With the initial condition  
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Applying Laplace transform to equation (13) in view of boundary condition (14) gives 
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Substitute for 𝑘𝑘 = 0 in (16) gives 
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    Further algebraic evaluation using equations (19) and (20), we arrive at 
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 1

1 2 2

( ,( , , ) , )

1
( )

1

s

s

w x y s

x y
s

w x y t 





 


 
  

L

L
 

    gives  

 2 2( , , ) ( ) tw x y t y ex    (23) 

 
Equation (23) is the exact solution of (13) - (14) as exactly obtained in Neog (2015). 

Example 2 
Consider the following two dimensional nonhomogeneous heat-like equation with variable coefficient given by 
(Neog, 2015): 
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 
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  (24) 

With the initial condition 
 ( , ,0) 0w x y    (25) 

The Laplace transform of equation (24) in view of the initial condition (25) gives  
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Where ( , , )w w x y s   
Applying the differential transform in Property 1: (a), (b), (e) to (26) gives 
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Substitute for 𝑘𝑘 = 2 in equation (27) gives  
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Substitute for ℎ = 2 in equations (27) gives  
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From equations equations (28) and (29), we have the following results: 
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By the use of the results in equation (30), all other coefficients of the DT series are all zero.  

Therefore, 
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 2 2( , , ) tw x y t yx e   (31) 

Equation (31) is the exact solution of (24)-(25), which is exactly the same as that obtained in Neog (2015). 
Example 3 
Consider the following two-dimensional nonhomogeneous wave-like equation with variable coefficient: 
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With the initial conditions 
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In view of the initial conditions (33), the Laplace transform of equation (32) is 
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Where ( , , )w w x y s   
Applying the differential transform in property 1: (a), (b), (c) to equation (34) gives  
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From equations equations (28) and (29), we have the following results: 
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By the use of the results in equation (30), all other coefficients of the DT series are all zero.  

Therefore, 
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 2 2( , , ) tw x y t yx e   (31) 

Equation (31) is the exact solution of (24)-(25), which is exactly the same as that obtained in Neog (2015). 
Example 3 
Consider the following two-dimensional nonhomogeneous wave-like equation with variable coefficient: 
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With the initial conditions 
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In view of the initial conditions (33), the Laplace transform of equation (32) is 
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Where ( , , )w w x y s   
Applying the differential transform in property 1: (a), (b), (c) to equation (34) gives  
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Substitute for 𝑘𝑘 = 0 in equation (35) gives 
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Substitute for ℎ = 0 in equation (35) gives 
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From equations (36) and (37), we obtain the following results 
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By the use of the results in equation (38), all other coefficients of the DT series are all zero.  

Hence,  
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 5 5 5( , , ) os( c h) xxw x y t y t    (40) 

Equation (40) is the exact solution of (32)-(33). 
 

Conclusion 
 

The applicability of the combined form of Laplace transform method and Differential Transform Method 
( LDTM)  is demonstrated in this paper, to solve two- dimensional homogeneous and nonhomogeneous of heat 
like equations and wave- like equation with variable coefficients.  The combined methods efficiently give the 
exact solution of two dimensional partial differential equations with little computational work.  Laplace 
Differential Transform Method ( LDTM)  can be applied to solve other two- dimensional homogeneous & 
nonhomogeneous partial differential equations and does not require linearization, discretization or perturbation. 
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This study considered only two dimensional partial differential equations, for a higher dimensions, it may become 
complicated and tedious to solve. Hence, for future study, the condition for which this method can be applied to 
solve for higher dimensions of partial differential equations should be included.  
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