On ordered Γ -semihypergroups Containing Two-sided Bases

Wichayaporn Jantanan, Chanon Budpan and Weeradon Loesna*

Department of Mathematics, Faculty of Science, Buriram Rajabhat University, Buriram, 31000, Thailand

* Corresponding author. E-mail address: wichayaporn.jan@bru.ac.th and weeradon.loesna@gmail.com

Received: 25 August 2020; Revised: 18 December 2020; Accepted: 24 December 2020; Available online: 8 February 2021

Abstract

The main purpose of this paper is to study the concept of an ordered Γ -semihypergroup containing two-sided bases that are studied analogously to the concept of Γ -semigroup containing two-sided bases considered by Thawhat Changpas and Pisit Kummoon in 2018. We introduce the notion of an ordered Γ -semihypergroup containing two-sided bases and describe some property of an ordered Γ -semihypergroup containing two-sided bases.

Keywords: ordered Γ -semihypergroup, two-sided bases, Γ -hyperideal

Introduction

In 1986, M. K. Sen and N. K. Saha (Sen & Saha, 1986). defined the notion of Γ -semigroup as a generalization of a semigroup. Also in (Fabrici, 1975). I. Fabrici has introduced and studied the concept of two-sided bases of semigroups. The notion and result of two-sided bases of semigroups have been extended to Γ -semigroup containing two-sided bases by T. Changphas and P. Kummoon (Changphas & Kummoon, 2018). The purpose of this paper is to introduce the concept of an ordered Γ -semihypergroup containing two-sided bases which extends from the concept of Γ -semigroup containing two-sided bases.

Hyperstructures represent a natural extension of classical algebraic structures and they were introduced by a French mathematician F. Marty (Marty, 1934). Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set.

Let H be a non-empty subset. Then the map $\circ: H \times H \to P^*(H)$ is called a hyperoperation, where $P^*(H)$ is the family of non-empty subset of H. (H, \circ) is called a semihypergroup if for every $x, y, z \in H$, we have $x \circ (y \circ z) = (x \circ y) \circ z$. If for every $x \in H$, $x \circ H = H = H \circ x$, then (H, \circ) is called a hypergroup. In the above definition, if A and B are two non-empty subsets of H and $x \in H$, then we define $A \circ B = \bigcup_{a \in A, b \in B} a \circ b, x \circ A = \{x\} \circ A$ and $A \circ x = A \circ \{x\}$.

Preliminaries

In this section, we give some definitions that will be used in this paper.

Definition 1. (Davvaz, Dehkordi & Heidari, 2010). Let H and Γ be two non-empty sets. H is called a Γ -semihypergroup if every $\gamma \in \Gamma$ is a hyperoperation on H, $x\gamma y \subseteq H$ for every $x,y \in H$, and for every

 $\alpha, \beta \in \Gamma$ and $x, y, z \in H$ we have $x\alpha(y\beta z) = (x\alpha y)\beta z$. Let A and B be two non-empty subsets of H and $\gamma \in \Gamma$. We define $A\gamma B = \bigcup_{a \in A, b \in B} a\gamma b$ and $A\Gamma B = \bigcup_{\gamma \in \Gamma} A\gamma B$.

Definition 2. (Davvaz & Omidi, 2017). (H,Γ,\leq) is called an ordered Γ -semihypergroup if (H,Γ) is a Γ -semihypergroup and (H,\leq) is a partially ordered set such that for any $x,y,z\in H$ and $\gamma\in\Gamma$, $x\leq y$ implies $z\gamma x\leq z\gamma y$ and $x\gamma z\leq y\gamma z$.

Here, if A and B are two non-empty subsets of H, then we say that $A \leq B$ if for every $a \in A$ there exists $b \in B$ such that $a \leq b$.

Definition 3. (Kondo & Lekkoksung, 2013). A nonempty subset A of an ordered Γ -semihypergroup (H,Γ,\leq) is called a sub Γ -semihypergroup of H if $A\Gamma A\subseteq A$.

Definition 4. (Kondo & Lekkoksung, 2013). A nonemty subset A of an ordered Γ -semihypergroup (H,Γ,\leq) is called a left (resp. right) Γ -hyperideal of H if $H\Gamma A\subseteq A$ (resp. $A\Gamma H\subseteq A$) and $a\in A, b\leq a$ for $b\in H$ implies $b\in A$. A is called a two-side Γ -hyperideal (or simply called a Γ -hyperideal) of H if A is both a left and a right hyperideal of H.

Definition 5. (Davvaz & Omidi, 2017). Let K be a non-empty subset of an ordered Γ -semihypergroup (H,Γ,\leq) . We define $(K]:=\{x\in H \ | \ x\leq k \ \text{ for some } k\in K\}$. For $K=\{k\}$, we write (k] instead of $(\{k\}]$. If A and B are non-empty subsets of H, then we have

- (1) $A \subseteq (A]$;
- (2) ((A]] = (A];
- (3) If $A \subseteq B$, then $(A] \subseteq (B]$;
- (4) $(A|\Gamma(B) \subseteq (A\Gamma B)$;
- (5) $((A|\Gamma(B)] = (A\Gamma B).$

Definition 6. (Davvaz & Omidi, 2018). A proper Γ -hyperideal M of an ordered Γ -semihypergroup (H,Γ,\leq) $(M \neq H)$ is said to be maximal if for any Γ -hyperideal A of $H,M\subseteq A\subseteq H$ implies M=A or A=H.

Proposition 7. Let (H,Γ,\leq) be an ordered Γ -semihypergroup and B_i be a Γ -hyperideal of H for each $i\in I$. If $\bigcap_{i\in I}B_i\neq\varnothing$ then $\bigcap_{i\in I}B_i$ is a Γ -hyperideal of H.

Proof. Assume that $\bigcap_{i\in I}B_i\neq\varnothing$. Suppose that $A=\bigcap_{i\in I}B_i\neq\varnothing$. We will show that $\bigcap_{i\in I}Bi$ is a Γ -hyperideal of H. First ,we let $a\in H\Gamma A$. We have $a\in h\gamma b_1$ for some $h\in H, \gamma\in\Gamma$ and $b_1\in A$. Since $b_1\in A=\bigcap_{i\in I}B_i$, so we obtain $b_1\in B_i$. For any $i\in I, B_i$ is a Γ -hyperideal. Hence $a\in h\gamma b_1\subseteq H\Gamma B_i\subseteq B_i$ for all $i\in I$. Thus $a\in\bigcap_{i\in I}B_i=A$. Therefore $H\Gamma A\subseteq A$. Next, we let $a\in A\Gamma H$. We have $a\in b_2\gamma h$ for some $b_2\in A, \gamma\in\Gamma$ and $h\in H$. Since $b_2\in A=\bigcap_{i\in I}B_i$, so we obtain $b_2\in B_i$. For any $i\in I, B_i$ is a Γ -hyperideal. Hence $a\in b_2\gamma h\subseteq B_i$ for all $i\in I$. Thus $a\in\bigcap_{i\in I}B_i=A$. Therefore $A\Gamma H\subseteq A$. Finally, we show that, if $a\in\bigcap_{i\in I}B_i$ and $c\in H$ such that $c\le a$ then $c\in\bigcap_{i\in I}B_i$. Let $a\in\bigcap_{i\in I}B_i$ and $c\in H$ such that

 $c \leq a. \text{ Since } a \in \bigcap_{i \in I} B_i \text{ and } B_i \text{ is a } \Gamma \text{ -hyperideal of } H \text{ for all } i \in I, \text{ we have } c \in B_i \text{ for all } i \in I. \text{ Thus } c \in \bigcap_{i \in I} B_i \text{ for all } i \in I. \text{ Hence } A = \bigcap_{i \in I} B_i \text{ is a } \Gamma \text{ -hyperideal of } H.$

(Davvaz & Omidi, 2017). Let A be a non-empty subset of an ordered Γ -semihypergroup (H, Γ, \leq) . We denote by I(A) is the Γ -hyperideal of H generated by A and I(A) can show in the form of $I(A) = (A \cup H\Gamma A \cup A\Gamma H \cup H\Gamma A\Gamma H)$.

In particular, for an element $a \in H$, we write $I(\{a\})$ by I(a) which is called the principal Γ -hyperideal of H generated by a. Thus, $I(a) = (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$.

Note that for any $b \in H$, we have that $(H\Gamma b \cup b\Gamma H \cup H\Gamma b\Gamma H]$ is a Γ -hyperideal of H. (Davvaz & Omidi, 2017). Finally, if A and B are two Γ -hyperideals of H then the union $A \cup B$ is a Γ -hyperideal of H.

Definition 8. Let (H,Γ,\leq) be an ordered Γ -semihypergroup. A non-empty subset A of H is called a two-sided base of H if it satisfies the following two conditions:

- (i) $H = (A \cup H \Gamma A \cup A \Gamma H \cup H \Gamma A \Gamma H);$
- (ii) if B is a subset of A such that $H = (B \cup H\Gamma B \cup B\Gamma H \cup H\Gamma B\Gamma H)$, then B = A.

Example 9. (Davvaz & Omidi, 2017) . Let $H = \{a, b, c, d\}$ and $\Gamma = \{\gamma, \beta\}$ be the sets of binary hyperoperations defined as follows.

γ	a	b	c	d	β	a	b	c	d
			$\{c,d\}$		a	a	$\{a,b\}$	$\{c,d\}$	d
b	$\{a,b\}$	b	$\{c,d\}$	d	b	$\{a,b\}$	$\{a,b\}$	$\{c,d\}$ $\{c,d\}$	d
			c		c	$\{c,d\}$	$\{c,d\}$	c	d
			d					d	

$$\leq := \{(a,a),(a,b),(b,b),(c,b),(c,c),(c,d),(d,b),(d,d)\}.$$

In (Davvaz & Omidi, 2017). (H,Γ,\leq) is an ordered Γ -semihypergroups. Consider $A_1=\{a\}$ and $A_2=\{b\}$, we have A_1 and A_2 are two-sided bases of H. But $A_3=\{a,b\}$ is not a two-sided base.

Example 10. (Davvaz & Omidi, 2018). Let $H = \{e, a, b, c, d\}$ and $\Gamma = \{\gamma, \beta\}$ be the sets of binary hyperoperations defined as follows.

γ	e	a	b	c	d	eta	e	a	b	c	d
e	e	e	e	e	e	e	e	e	e	e	e
a	e	$\{a,b\}$	b	b	b				a		
b	e	b	b	b	b	b	e	a	$\{a,b\}$	a	a
c	e	c	c	c	c	c	e	c	c	c	c
d	e	d	d	d	d	d	e	d	d	d	d

$$\leq := \{(a,a),(a,b),(b,b),(c,c),(c,d),(d,d),(e,e)\}.$$

In (Davvaz & Omidi, 2018). (H,Γ,\leq) is an ordered Γ -semihypergroups. Consider $A=\{e,b,d\}$ and $B=\{a,b,d\}$, we have A and B are two-sided bases of B. But $C=\{a\}$ is not a two-sided base.

In Example 9. and Example 10., it is observed that two-sided bases of H have same cardinality. This leads a proof in Theorem 4.

Definition 11. Let (H,Γ,\leq) be an ordered Γ -semihypergroup. We define a **quasi-ordering** on H by for any $a,b\in H$,

$$a \preceq_I b \Leftrightarrow I(a) \subseteq I(b)$$
.

We write $a \prec_I b$ if $a \preceq_I b$ but $a \neq b$. It is clear that, for any a, b in $H, a \leq b$ implies $a \preceq_I b$.

Lamma 12. Let A be a two-sided base of an ordered Γ -semihypergroup (H,Γ,\leq) , and $a,b\in A$. If $a\in (H\Gamma b\cup b\Gamma H\cup H\Gamma b\Gamma H]$, then a=b.

Proof. Assume that $a \in (H\Gamma b \cup b\Gamma H \cup H\Gamma b\Gamma H]$, and suppose that $a \neq b$. Let $B = A \setminus \{a\}$. Since $a \neq b, b \in B$. To show that $I(A) \subseteq I(B)$, it suffices to show $A \subseteq I(B)$. Let $x \in A$. If $x \neq a$, then $x \in B$ and so $x \in I(B)$. If x = a, then by assumption we have $x = a \in (H\Gamma b \cup b\Gamma H \cup H\Gamma b\Gamma H] \subseteq I(b) \subseteq I(B)$. Thus $H = I(A) \subseteq I(B) \subseteq H$. This is contradiction. Hence a = b.

Main Results

In this part the algebraic structure of an ordered Γ -semihypergroup containing two-sided bases will be presented.

Theorem 1. A non-empty subset A of an ordered Γ -semihypergroup (H,Γ,\leq) is a two-sided base of H if and only if A satisfies the following two conditions:

- (i) For any $x \in H$ there exists $a \in A$ such that $x \preceq_I a$;
- (ii) For any $a, b \in A$, if $a \neq b$, then neither $a \leq_I b$ nor $b \leq_I a$.

Proof. Assume first that A is a two-sided base of H. Then I(A) = H. Let $x \in H$, then $x \in (A \cup H\Gamma A \cup A\Gamma H \cup H\Gamma A\Gamma H]$. Since $x \in (A \cup H\Gamma A \cup A\Gamma H \cup H\Gamma A\Gamma H)$, we have $x \leq y$ for some $y \in A \cup H\Gamma A \cup A\Gamma H \cup H\Gamma A\Gamma H$. There are four cases to consider:

Case 1: $y \in A$. Since $x \leq y$, then we have $x \leq_I y$, where $y \in A$.

Case 2: $y \in H\Gamma A$. Then $y \in h\gamma a$ for some $h \in H$, $\gamma \in \Gamma$ and $a \in A$.

By $y \in h\gamma a \subseteq H\Gamma a \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$, $H\Gamma y \subseteq H\Gamma (H\Gamma a) = (H\Gamma H)\Gamma a \subseteq H\Gamma a \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$, $y\Gamma H \subseteq (H\Gamma a)\Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$ and $H\Gamma y\Gamma H \subseteq H\Gamma (H\Gamma a)\Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$ and $H\Gamma y\Gamma H \subseteq H\Gamma (H\Gamma a)\Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$. Then $y \cup H\Gamma y \cup y\Gamma H \cup H\Gamma y\Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$, so $(y \cup H\Gamma y \cup y\Gamma H \cup H\Gamma y\Gamma H) \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$. Thus $I(y) \subseteq I(a)$, i.e., $Y \preceq_I a$.

Case 3: $y \in A\Gamma H$. Then $y \in a\gamma h$ for some $h \in H$, $\gamma \in \Gamma$ and $a \in A$.

By $y \in a\gamma h \subseteq a\Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$, $H\Gamma y \subseteq H\Gamma (a\Gamma H) \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$, $y\Gamma H \subseteq (a\Gamma H)\Gamma H \subseteq a\Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$ and $H\Gamma y\Gamma H \subseteq H\Gamma (H\Gamma a)\Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$. Then $y \cup H\Gamma y \cup y\Gamma H \cup H\Gamma y\Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$. Hence $(y \cup H\Gamma y \cup y\Gamma H \cup H\Gamma y\Gamma H) \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$. Thus $I(y) \subseteq I(a)$, i.e., $y \preceq_I a$.

Case 4: $y \in H\Gamma A\Gamma H$. Then $y \in h\gamma a_1 \beta h_2$ for some $h_1, h_2 \in H$, $\gamma, \beta \in \Gamma$ and $a \in A$. By $y \in h\gamma a_1 \beta h_2 \subseteq H\Gamma a \Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$, $H\Gamma y \subseteq H\Gamma (H\Gamma a\Gamma H) \subseteq H\Gamma a\Gamma H$ $\subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$, $y\Gamma H \subseteq (H\Gamma a\Gamma H)\Gamma H \subseteq H\Gamma a\Gamma H \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$ and $H\Gamma y\Gamma H \subseteq H\Gamma (H\Gamma a\Gamma H) \cap H\Gamma \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$. Then $y \cup H\Gamma y \cup y\Gamma H \cup H\Gamma y\Gamma H$ $\subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$, so $(y \cup H\Gamma y \cup y\Gamma H \cup H\Gamma y\Gamma H) \subseteq (a \cup H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$. Thus $I(y) \subseteq I(a)$, i.e., $y \preceq_I a$. Hence condition (i) is true. Let a,b be elements of A such that $a \ne b$. Suppose $a \preceq_I b$. We set $B = A \setminus \{a\}$. Then $b \in B$. Let x be element of H. By (i), there exists x in $x \in I(B)$. This is a contradition. If $x \in I(B) \cap I(B) \cap I(B) \cap I(B)$ since $x \in I(B) \cap I(B) \cap I(B)$. This is a contradition. The case $x \in I(B) \cap I(B) \cap I(B)$. Thus (ii) true.

Conversely, assume that the conditions (i) and (ii) hold. We will show that A is a two-sided base of H. To show that H = I(A). Let $x \in H$. By (i), there exists $a \in A$ such that $I(x) \subseteq I(a)$. Then $x \in I(x) \subseteq I(a) \subseteq I(A)$. Thus $H \subseteq I(A)$ and H = I(A). It remains to show that A is a minimal subset of H with the property: H = I(A). Suppose that H = I(B) for some $B \subset A$. Since $B \subset A$, there exists $a \in A$ and $a \notin B$. Next we show that $a \notin B$. If $a \in B$, then $a \le y$ for some $y \in B$. So we have $a \preceq_I y$. This is a contradiction. Thus $a \notin B$. Since $a \in A \subseteq H = I(B)$ and $a \notin B$, it follows that $a \in H \subseteq B \cap B \cap H \cap H \cap B \cap H$. Since $a \in H \cap B \cap H \cap H \cap B \cap H$, we have $a \le y$ for some $y \in H \cap B \cap B \cap H \cap H \cap B \cap H$. There are three cases to consider:

Case 1: $y \in H\Gamma B$. Then $y \in h\gamma b_1$ for some $b_1 \in B, \gamma \in \Gamma$ and $h \in H$. Since $a \leq y$ and $y \in b_1 \cup H\Gamma b_1 \cup b_1\Gamma H \cup H\Gamma b_1\Gamma H$, so $a \in (b_1 \cup H\Gamma b_1 \cup b_1\Gamma H \cup H\Gamma b_1\Gamma H]$. It follows that $I(a) \subseteq I(b_1)$. Hence, $a \preceq_I b_I$. This is a contradiction.

Case 2: $y \in B\Gamma H$. Then $y \in b_2 \gamma h$ for some $b_2 \in B, \gamma \in \Gamma$ and $h \in H$. Since $a \leq y$ and $y \in b_2 \cup H\Gamma b_2 \cup b_2 \Gamma H \cup H\Gamma b_2 \Gamma H$, so $a \in (b_2 \cup H\Gamma b_2 \cup b_2 \Gamma H \cup H\Gamma b_2 \Gamma H]$. It follows that $I(a) \subseteq I(b_2)$. Hence, $a \preceq_I b_2$. This is a contradiction.

Case 3: $y \in H\Gamma B\Gamma H$. Then $y \in h_1\gamma_1b_3\gamma_2h_2$ for some $b_3 \in B, \gamma_1, \gamma_2 \in \Gamma$ and $h_1, h_2 \in H$. Since $a \leq y$ and $y \in b_3 \cup H\Gamma b_3 \cup b_3\Gamma H \cup H\Gamma b_3\Gamma H$, so $a \in (b_3 \cup H\Gamma b_3 \cup b_3\Gamma H \cup H\Gamma b_3\Gamma H]$. Thus $I(a) \subseteq I(b_3)$. Hence $a \preceq_I b_3$. This is a contradiction.

Therefore, A is a two-sided base of H as required, and the proof is completed.

Theorem 2. Let A be a two-sided base of an ordered Γ -semihypergroup (H,Γ,\leq) such that I(a)=I(b) for some a in A and b in H. If $a\neq b$, then H contains at least two two-sided base.

Proof. Assume that $a \neq b$. Suppose that $b \in A$. Since $a \preceq_I b$ and $a \neq b$, it follows that $a \in (H\Gamma b \cup b\Gamma H \cup H\Gamma b\Gamma H]$. By Lemma 12., we obtain a = b. This is a contradiction. Thus $b \in H \setminus A$. Let $B := (A \setminus \{a\}) \cup \{b\}$. Since $b \in B$, we have $b \not\in A$, and $B \not\subseteq A$. Hence $A \neq B$. We will show that $B \subseteq A$.

is a two-sided base of H. To show that B satisfies (i) in Theorem 1., let $x \in H$. Since A is a two-sided base of H, there exists $c \in A$ such that $x \preceq_I c$. If $c \neq a$, then $c \in B$. If c = a, then $x \preceq_I a$. Since $a \preceq_I b, x \preceq_I a \preceq_I b$. Then $x \preceq_I b$. To show that B satisfies (ii) in Theorem 1., let $c_1, c_2 \in B$ be such that $c_1 \neq c_2$. We will show that neither $c_1 \preceq_I c_2$ nor $c_2 \preceq_I c_1$. Since $c_1 \in B$ and $c_2 \in B$, we have $c_1 \in A \setminus \{a\}$ or $c_1 = b$ and $c_2 \in A \setminus \{a\}$ or $c_2 = b$. There are four cases to consider:

Case 1: $c_1 \in A \setminus \{a\}$ and $c_2 \in A \setminus \{a\}$. By Theorem 1. (ii), this implies neither $c_1 \leq_I c_2$ nor $c_2 \leq_I c_1$.

Case 2: $c_1 \in A \setminus \{a\}$ and $c_2 = b$. If $c_1 \preceq_I c_2$, then $c_1 \preceq_I b$. Since $b \preceq_I a, c_1 \preceq_I b \preceq_I a$. Thus $c_1 \preceq_I a$ where $a, c_1 \in A$. By Theorem 1. (ii), $c_1 = a$. This is a contradiction. If $c_2 \preceq_I c_1$, then $b \preceq_I c_1$. Since $a \preceq_I b, a \preceq_I b \preceq_I c_1$. So $a \preceq_I c_1$ where $a, c_1 \in A$. By Theorem 1. (ii), $a = c_1$. This is a contradiction.

Case 3: $c_2 \in A \setminus \{a\}$ and $c_1 = b$. If $c_1 \preceq_I c_2$, then $b \preceq_I c_2$. Since $a \preceq_I b, a \preceq_I b \preceq_I c_2$. Hence $a \preceq_I c_2$ where $a, c_2 \in A$. By Theorem 1. (ii), $a = c_2$. This is a contradiction. If $c_2 \preceq_I c_1$, then $c_2 \preceq_I b$. Since $b \preceq_I a, c_2 \preceq_I b \preceq_I a$. Thus $c_2 \preceq_I a$ where $a, c_2 \in A$. By Theorem 1. (ii), $c_2 = a$. This is a contradiction.

Case 4: $c_1 = b$ and $c_2 = b$. This is impossible.

Thus B satisfies (i) and (ii) in Theorem 1. Therefore, B is a two-sided base of H.

Corollary 3. Let A be a two-sided base of an ordered Γ -semihypergroup (H,Γ,\leq) , and let $a\in A$. If I(x)=I(a) for some $x\in H, x\neq a$, then x belongs to two-sided base of H, which is different from A.

Theorem 4. Let A and B be any two-sided bases of an ordered Γ -semihypergroup (H, Γ, \leq) . Then A and B have the same cardinality.

Proof. Let $a \in A$. Since B is a two-sided base of H and $a \in H$, by Theorem 1.(i) there exists an element $b \in B$ such that $a \preceq_I b$. Since A is a two-sided base of H, by Theorem 1.(i) there exists $a^* \in A$ such that $b \preceq_I a^*$. So $a \preceq_I b \preceq_I a^*$, i.e., $a \preceq_I a^*$. By Theorem 1.(ii), $a = a^*$. Hence I(a) = I(b).

Define a mapping $\varphi:A\to B$ by $\varphi(a)=b$ for all $a\in A$.

To show that φ is well-defined, let $a_1, a_2 \in A$ be such that $a_1 = a_2, \varphi(a_1) = b_1$ and $\varphi(a_2) = b_2$ for some $b_1, b_2 \in B$. Then $I(a_1) = I(b_1)$ and $I(a_2) = I(b_2)$. Since $a_1 = a_2, I(a_1) = I(a_2)$. Hence $I(a_1) = I(a_2) = I(b_1) = I(b_2)$, i. e. , $b_1 \preceq_I b_2$ and $b_2 \preceq_I b_1$. By Theorem 1. (ii) , $b_1 = b_2$. Thus $\varphi(a_1) = \varphi(a_2)$. Therefore, φ is well-defined. We will show that φ is one-one. Let $a_1, a_2 \in A$ be such that $\varphi(a_1) = \varphi(a_2)$. Since $\varphi(a_1) = \varphi(a_2)$, $\varphi(a_1) = \varphi(a_2) = b$ for some $b \in B$. So $I(a_2) = I(a_1) = I(b)$. Since $I(a_2) = I(a_1)$, $a_1 \preceq_I a_2$ and $a_2 \preceq_I a_1$. This implies $a_1 = a_2$. Therefore φ is one-one. We will show that φ is onto. Let $b \in B$. Since A is a two-sided base of A, by Theorem 1.(i) there exists an element $a \in A$ such that $a \preceq_I b^*$. So $a \preceq_I a \preceq_I b^*$, i. e. , $a \preceq_I b^*$. By Theorem 1. (ii) $a \preceq_I b^*$. Hence $a \preceq_I b^*$. Thus $a \preceq_I b^*$. So $a \preceq_I a \preceq_I b^*$, i. e. , $a \preceq_I b^*$. By Theorem 1. (ii) $a \preceq_I b^*$. Hence $a \preceq_I b^*$. Thus $a \preceq_I b^*$. Therefore, $a \preceq_I b^*$ is onto. This completes the proof.

If a two-sided base A of an ordered Γ -semihypergroup (H,Γ,\leq) is a two-sided Γ -hyperideal of H, then $H=(A\cup H\Gamma A\cup A\Gamma H\cup H\Gamma A\Gamma H)\subseteq (A]=A$. Hence H=A. The converse statement is obvious. Then we conclude that.

Remark 5. It is observed that a two-sided base A of an ordered Γ -semihypergroup (H,Γ,\leq) is a two-sided Γ -hyperideal of H if and only if A=H.

Theorem 6. Let A be a two-sided base of an ordered Γ -semihypergroup (H,Γ,\leq) . If A is a sub Γ -semihypergroup of H then $A=\{a\}$ with $a\in a\gamma a$ for all $\gamma\in\Gamma$.

Proof. Assume that A is a sub Γ -semihypergroup H. Let $a,b \in A$ and $\gamma \in \Gamma$. Since A is a sub Γ -semihyperigroup of H, $a\gamma b \subseteq A$. Setting $c \in a\gamma b$; thus $c \in H\Gamma b \subseteq H\Gamma b \cup b\Gamma H \cup H\Gamma b\Gamma H \subseteq (H\Gamma b \cup b\Gamma H \cup H\Gamma b\Gamma H)$. By Lemma 12, c = b. Similarly, $c \in a\Gamma H \subseteq H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H \subseteq (H\Gamma a \cup a\Gamma H \cup H\Gamma a\Gamma H)$ By Lemma 12., c = a. We have a = b. Therefore, $A = \{a\}$ with $a \in a\gamma a$ for all $a \in A$ and $\gamma \in \Gamma$.

In Example 9., we have $A_2 = \{b\}$ is a two-sided base of an ordered Γ -semihypergroup H, such that $b \in b\gamma b$ for all $\gamma \in \Gamma$. But $A_2 = \{b\}$ is not a sub Γ -semihypergroup of H. This shows that the converse statement is not valid in general.

Theorem 7. Let (H,Γ,\leq) be an ordered Γ -semihypergroup and let T be an union of all two-sided bases of H. Then $H\setminus T$ is either empty set or a Γ -hyperideal of H.

Proof. Assume that $H\setminus T\neq\varnothing$. We will show that $H\setminus T$ is a Γ -hyperideal of H. Let $a\in H\setminus T, x\in H$ and $\gamma\in\Gamma$. To show that $x\gamma a\subseteq H\setminus T$ and $a\gamma x\subseteq H\setminus T$, we suppose that $x\gamma a\not\subseteq H\setminus T$. Then there exists $b\in x\gamma a$ such that $b\in T$. Hence $b\in A$ for some a two-sided base A of H. Then $b\in H\Gamma a$. By $b\in H\Gamma a\subseteq a\cup a\Gamma H\cup H\Gamma a\cup H\Gamma a\Gamma H\subseteq (a\cup a\Gamma H\cup H\Gamma a\cup H\Gamma a\Gamma H)=I(a)$, so $I(b)\subseteq I(a)$. Next, we will show that $I(b)\subset I(a)$. Suppose that I(b)=I(a). Since $a\in H\setminus T$ and $b\in A, a\neq b$. Since I(b)=I(a) and Corollary 3., we conclude that $a\in T$. This is a contradiction. Thus $I(b)\subset I(a)$, i.e., $b\prec_I a$. Since A is a two-sided base of A and A is a contradiction of A in A i

Theorem 8. Let (H,Γ,\leq) be an ordered Γ -semihypergroup and $\varnothing \neq T \subset H$. If H contains a proper Γ -hyperideal of H containing every proper Γ -hyperideal of H, denoted by M^* , then the following statements are equivalent:

- (i) $H \setminus T$ is a maximal proper Γ -hyperideal of H.
- (ii) For every element $a \in T, T \subseteq I(a)$;
- (iii) $H \setminus T = M^*$;
- (iv) Every two-sided base of H is a one-element base.

Proof. (i) \Leftrightarrow (ii). Assume that $H \setminus T$ is a maximal proper Γ -hyperideal of H. Let $a \in T$. Suppose that $T \not\subseteq I(a)$. Since $T \not\subseteq I(a)$, there exists $x \in T$ such that $x \not\in I(a)$. So $x \not\in H \setminus T$. Since $x \not\in I(a)$, $x \not\in H \setminus T$ and $x \in H$, we have $(H \setminus T) \cup I(a) \subset H$. Thus $(H \setminus T) \cup I(a)$ is a proper Γ -hyperideal of H. Hence $H \setminus T \subset (H \setminus T) \cup I(a)$. This contradicts to the maximality of $H \setminus T$.

Conversely, assume that for every element $a \in T, T \subseteq I(a)$. We will show that $H \setminus T$ is a maximal proper Γ -hyperideal of H. Since $a \in T$, $a \notin H \setminus T$. So $H \setminus T \subset H$. Since $T \subset H, H \setminus T \neq \emptyset$. By Theorem 7., $H \setminus T$ is a proper Γ -hyperideal of H. Suppose that M is a proper Γ -hyperideal of H such

that $H\setminus T\subset M\subset H$. Since $H\setminus T\subset M$, there exists $x\in M$ such that $x\not\in H\setminus T$, i.e., $x\in T$. Then $x\in M\cap T$. So $M\cap T\neq\varnothing$. Let $c\in M\cap T$. Then $c\in M$ and $c\in T$. Since $c\in M, H\Gamma c\subseteq H\Gamma M\subseteq M$, $c\Gamma H\subseteq M\Gamma H\subseteq M$ and $H\Gamma c\Gamma H\subseteq H\Gamma M\Gamma H\subseteq M$. Then $I(c)=(c\cup H\Gamma c\cup c\Gamma H\cup H\Gamma c\Gamma H]\subseteq M$. Since $c\in T$, by assumption we have $T\subseteq I(c)$. Hence $H=(H\setminus T)\cup T\subseteq (H\setminus T)\cup I(c)\subseteq M\subset H$. Thus M=H. This is a contradiction. Therefore $H\setminus T$ is a maximal proper Γ -hyperideal of H.

Conversely, assume that every two-sided base of H is a one element base. Then H=I(a) for all $a\in T$. We will show that $H\setminus T=M^*$. The statement that $H\setminus T$ is a maximal proper Γ -hyperideal of H follows from the proof (i) \Leftrightarrow (ii). Let M be a Γ -hyperideal of H such that M is not contained in $H\setminus T$. Then $T\cap M\neq\varnothing$. Let $a\in T\cap M$. Hence $a\in T$ and $a\in M$. So $H\Gamma a\subseteq H\Gamma M\subseteq M$, $a\Gamma H\subseteq M\Gamma H\subseteq M$ and $H\Gamma a\Gamma H\subseteq H\Gamma M\Gamma H$. So we have $I(a)=(a\cup H\Gamma a\cup a\Gamma H\cup H\Gamma a\Gamma H)\subseteq M$. Hence $H=I(a)\subseteq M$ $\subseteq H$. Therefore M=H.

(i) \Leftrightarrow (iii). Assume that $H \setminus T$ is a maximal proper Γ -hyperideal of H. Next, we will show that $H \setminus T = M^*$. Since $H \setminus T$ is a proper Γ -hyperideal of H, $H \setminus T \subseteq M^* \subset H$. By assumption, $H = M^*$ or $H \setminus T = M^*$. Hence $H \setminus T = M^*$. The converse statement is obvious.

Conclusion and Discussion

In this paper, we prove that a non-empty subset A of an ordered Γ -semihypergroup (H,Γ,\leq) is a two-sided base of H if and only if A satisfies the following two conditions: (i) For any $x\in H$ there exists $a\in A$ such that $x\preceq_I a$; (ii) For any $a,b\in A$, if $a\neq b$, then neither $a\preceq_I b$ nor $b\preceq_I a$. Also we prove that if A and B be any two-sided bases of an ordered Γ -semihypergroup (H,Γ,\leq) , then A and B have same cardinality. Finally, let (H,Γ,\leq) be an ordered Γ -semihypergroup and let T be an union of all two-sided bases of H we prove that $H\setminus T$ is either empty set or a Γ -hyperideal of H.

References

- Changpas, T., & Kummoon, P. (2018). On Γ -semigroups containing two-sided bases. *KKU Science Journal*, 46(1), 154-161. Retrieved from http://scijournal.kku.ac.th
- Davvaz, B., Dehkordi, S.O., & Heidari, D. (2010). Γ -semihypergroups and properties. *U.P.B Scientific Bulletin A*, 72(1), 195-208. Retrieved from https://www.researchgate.net
- Davvaz, B., & Omidi, S. (2017). Bi- Γ -hyperideals and Green's relations in ordered Γ -semihypergroups. Eurasian Math, 8(4), 63-73. Retrieved from http://www.mathnet.ru
- Davvaz, B., & Omidi, S. (2017). Convex ordered Γ -semihypergroups associated to strongly regular relations. *Matematika*, 33(2), 227-240. Retrieved from https://matematika.utm.my
- Davvaz, B., & Omidi, S. (2017). C- Γ -hyperideal theory in ordered Γ -semihypergroups. *Journal of Mathematical and Fundamental Sciences*, 49(2), 181-192. Retrieved from http://journals.itb.ac.id
- Davvaz, B., & Omidi, S. (2018). Some characterizations of right weakly prime Γ -hyperideals of ordered Γ -semihypergroups. *Montisnigri Math*, 42, 5-11. Retrieved from https://www.semanticscholar.org
- Davvaz, B., & Omidi, S. (2018). Some properties of quasi- Γ -hyperideals and hyperfilters in ordered Γ -semihypergroups. Southeast Asian Bulletin of Mathematics, 42(2), 223-242. Retrieved from http://www.seams-bull-math.ynu.edu.cn/index.jsp
- Marty, F. (1934). Sur une generalization de la notion de group. Retrieved from https://www.scienceopen.com/document?vid=037b45a2-5350-43d4-86e1-39673e906fb5
- Fabrici, I. (1975). Two-sided bases of semigroups. *Matematicky casopis*, 25(2), 173-178. Retrieved from http://dml.cz/dmlcz/126947
- Kondo, M., & Lekkoksung, N. (2013). On intra-regular Γ -semihypergroups. *International Journal of Math*, 7(25), 1379-1386. Retrieved from https://www.researchgate.net
- Sen, M. K., & Saha, N. K. (1986). On Γ -semigroup I. Bulletin of the Calcutta Mathematical Society, 78, 180-186.