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Abstract  
The regression model for the response variable with bounded domain is discussed. The baseline distribution called the unit 

Lindley distribution is considered. In the context of regression structure, the logit function is utilized with the unit Lindley model. 
Then, we have developed the Bayesian unit Lindley regression based on a frequently used prior. Additionally, we also investigate 
the specific prior for all standardized exploratory variables. The syntax of JAGS for the proposed model is included. In 
application study, the Bayesian unit Lindley regression is applied to two different datasets where response variables are associated 
with gasoline yield and risk assessment respectively. Based on the result of estimates and log-likelihood values, it is important to 
point out that the Bayesian unit-Lindley regression can improve the performance of the classical one. 

Keywords: rate data, Bayesian, Unit distribution, gasoline yield, risk assessment  

Introduction 

The Lindley distribution have been studied and applied to wildly kind of lifetime data. Some applications 
include waiting times before service of bank customers (Ghitany, Atieh, & Nadarajah, 2008), lifetime of 
patients with squamous cell carcinoma (Mazucheli & Achcar, 2011), survival times of guinea pigs infected 
with virulent tubercle bacilli (Shanker, Sharma, & Shanker, 2013), times to breakdown of an insulating fluid 
(Raqab, Al-Jarallah, & Al-Mutairi, 2017). Recently, Mazucheli, Menezes, and Chakraborty (2019) have 
extended the Lindley distribution to model data on unit interval, in particular rate and proportion. Specifically, 
they have developed the one parameter unit-Lindley distribution with bounded domain as an alternative to beta 
distribution. By applied suitable parameterization and logit link function, they also proposed regression model 
for continuous bounded data and the interpretation of regression parameters is straightforwardly related to the 
mean of a dependent variable. In application study, they created regression model by performing maximum 
likelihood estimation. Moreover, they concluded that the unit-Lindley regression model fits better than the 
Beta regression for proportion of households with inadequate water supply.  
 As mentioned above, the unit Lindley regression model can be considered as an alternative model to 
analyze rate and proportion data. In this work, we have been motivated to propose regression model based on 
the unit Lindley distribution (Mazucheli et al., 2019). By considering regression coefficients to be random 
variables rather than constant, the Bayesian unit-Lindley model with informative prior was obtained. Besides, 
the use of informative prior can be perceived as adding a number of observations to a given sample size (Ali, 
Aslam, & Kazmi, 2013).  The rest of this work are organized as follows. The unit Lindley distribution and its 
properties are discussed. The generalized linear model based on unit Lindley response variable is described 
together with its maximum likelihood estimation. Next, the Bayesian unit Lindley model is created. Finally, 
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application study is performed to compare performances between traditional unit Lindley regression model and 
Bayesian unit Lindley regression model. 

Unit-Lindley Linear Model 
Mazucheli et al. (2019) proposed the unit Lindley distribution with the cumulative distribution function 

(cdf) and the probability density function (pdf) are respectively  
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where 0 1y   and 0  .  
 

The unit Lindley distribution is a strongly unimodal distribution with exponential tail. It has the exist 
moments, and some properties of the unit Lindley distribution such as the hazard rate function, mean residual 
life function, and mean deviation were provided in Mazucheli et al. (2019). 

They also developed linear model based on the unit-Lindley distribution. First, they reparametrized the 
unit-Lindley probability density function in terms of i  as 
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where 1,  ...,  i n= . Let 1(1, , , )T T

i i ipx x=x  is a vector of covariates and 0 1( , , , )T
p  =β is a vector of 

regression coefficient. Another component of the unit-Lindley linear model is a link function:  
 

( ) T
i ig  = x β  

 
It maps the unbounded space of the linear predictor into bounded sample space (Smithson & Verkuilen, 

2006). Specifically, bounded sample space of unit-Lindley dependent random variable of is on interval 
(0,1). In addition, there are many forms of link function can be used, such as the probit or complementary 
log-log link, as well as any cumulative distribution function corresponding to a continuous distribution. 
Referring to the work of Mazucheli et al. (2019), we also use the logit link function written as  
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Maximum Likelihood Estimation 
For the sake of parameter estimation, the estimates of β  can be obtained by maximizing the likelihood or 

log-likelihood function. Let response variable 1,..., nY Y  have the unit Lindley distribution denoted by 
~ UL( )i iY  , 1,...,i n=  and 1(1, , , )T T

i i ipx x=x  be a vector of covariate based on for the i -th observation.  
Then, the likelihood and the log likelihood functions with covariates can be represented respectively as  
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Moreover, numerically maximized of likelihood and log-likelihood function can be accomplished by optim 

function in R (R Core Team, 2018).    
Bayesian Unit-Lindley Linear Model  
In previous section, the traditional approach for parameter estimation is discussed. On the other hand, in 

this section, we introduce Bayesian framework for unit-Lindley regression model. The Bayesian unit-Lindley 
linear model mainly created based on the likelihood function, prior distribution, and posterior distribution, 
denoted respectively by ( )L β , ( )p β , and ( )p β | y .  

If a response variable Y  is distributed as unit-Lindley and ( , )i ix y  be regression data of size n , the 
Bayesian unit-Lindley regression model is  
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Accordingly, under squared error loss function, Bayesian estimator of the regression coefficient will 
be ( )E |β y .  

Normal prior 
The prior distribution can be considered the most important component of the Bayesian inference as it 

represents the information about an uncertain parameter. We refer the reader to Smithson and Verkuilen 
(2006), Ali et al. (2013), and Ali (2015) for more details about the impact of prior distribution toward 
Bayesian estimator. In the context of generalized linear model, the most frequency used informative prior 
distributions is normal distribution (Dey, Ghosh, & Mallick, 2000). Let prior distribution for β  be the 
normal distribution, denoted by 2N( , ) β ββ , then   
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There are many researchers devoted to investigate on the prior distribution and relative hyperparameters. 

Recently, Gelman,  Jakulin, Pittau, and Su (2008) come up with an idea of defining weakly informative prior 
for logistic and other regression models. As independence with difference scale should not have the same prior 
distribution. Gelman et al. (2008) suggested that all independence variables should be standardized to have 
mean 0 and standard deviation 0.5 except for qualitative variable. 

Posterior distribution and Gibbs Sampler 
The posterior distribution will integrate the sample information from the likelihood function with accessible 

parameters information from the prior distribution. Subsequently, the posterior distribution with respect to the 
normal becomes 
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As the posterior distribution does not have an explicit form, the computational methods called Gibbs 
sampler, the best known MCMC sampling algorithms, was applied in order to find ( )E |β y . By setting some 
initial points, the Gibbs sampler algorithm random will walk through parameter space. The basic scheme Gibbs 
sampler is given as follows (Joseph et al, 2001)   
Step 0. Choose as arbitrary starting point (0)β  
Step 1. Generate (i 1)+β  as follows: 
 
  Generate  (i 1) (i) (i) (i)

0 0 1 2~ ( | , ,..., , )pp    + y ; 
  Generate  (i 1) (i) (i) (i)

1 1 0 2~ ( | , ,..., , )pp    + y ; 
 

Generate  (i 1) (i) (i) (i)
0 2 1~ ( | , ,..., , )p p pp    +

− y ; 
Step 2. Set 1i i= +  and go to step 1. 
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 Besided, trace plot and density plot of MCMC chains will be applied to access convergence to stationarity. 
Then, Gelman plot from R2jags package (Su & Yajima, 2015) in R is also presented in order to examine 
convergence of the average (Robert, Casella, & Casella, 2010). Moreover, the JAGS syntax for Bayesian 
unit-Lindley regression model with logit link is presented in Appendix. 
 

Application to Real Data 
 

In this section, two real data are analyzed based on the unit-Lindley regression model and the Bayesian 
unit-Lindley regression model. For the Bayesian one, we use two chains based on difference initial values. In 
addition, each chain generates 400,000 interactions and discard the first 100,000 as burn-in. We also 
consider Gelman plot in Rjags package (Su and Yajima, 2015) for all parameters. Furthermore, the Gelman 
plots show the scale-reduction over time step. The factor of 1 means that there is no difference between chain. 
The density plot in coda package (Plummer et al., 2006) is also included to determine symmetric of the 
MCMC density. Finally, the performances of candidate models are discussed.  

Gasoline data 
The first data is Gasoline data consisting 32 observations. For this data, the aim of the research was to 

evaluate how distillation properties of crude have an impact on percentage yield of gasoline (Hand, Daly, 
McConway, Lunn, & Ostrowski, 1993). In addition, yield is response variable with other independent 
variables described as follow (Cribari-Neto & Zeileis, 2009) 

yield  proportion of crude oil converted to gasoline after distillation and fractionation. 
gravity  crude oil gravity (degrees API). 
pressure  vapor pressure of crude oil (lbf/in2). 
temp10  temperature (degrees F) at which 10 percent of crude oil has vaporized. 
temp  temperature (degrees F) at which all gasoline has vaporized. 
The results of estimates, standard error, and log likelihood from MLE and Bayesian are shown in Table 1.   

 
Table  1  The results of regression coefficients estimation together with log likelihood regarding to MLE and Bayesian methods 

for gasoline data (n =32) 
 MLE Bayesian 
 Estimates SE Estimates SE 

Intercept -1.7113 0.157 -1.6657 0.0003 
1  4.8239 4.251 0.3660 0.0079 

2  -3.0801 7.913 2.2829 0.0131 

3  -7.9884 8.889 -7.1447 0.0147 

4  13.2996 3.665 13.5582 0.0066 
log likelihood 32.1818 33.0260 

 
Based on greater log likelihood values, the Bayesian unit-Lindley regression model is more appropriate to 

this data than the unit-Lindley regression model. Therefore, the regression structure of this data should be  
 

logit( ) 1.6657 0.366gravity 2.2829 pressure 7.1447 temp10 13.5582tempi i i i i = − − + − +
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For Bayesian unit-Lindley regression model, the Gelman plots with respect to 0 1 2 3,  ,  ,  ,      and  4  
are demonstrated respectively. As shown in Figure 1, all regression coefficients of the unit-Lindley regression 
model, the factors close to 1, therefore, the MCMC chains are similar. 

    

 

 

Figure 1 Gelman plots of MCMC chains related to 0 1 2 3,  ,  ,  ,    and  4  respectively for gasoline data 

 

 

Figure 2 Density plots of MCMC chains related to 0 1 2 3,  ,  ,  ,    and  4  respectively for gasoline data 
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Risk assessment data 
The second data is related to risk managers cost effectiveness (Schmit & Roth, 1990). It can be obtained 

from the personal web page of Professor E. Frees (https:// sites.google.com/a/wisc.edu/jed-frees/). The 
objective of the study was to investigate theeffctiveness of risk management while controlling for 
organizational risk characteristics. This data consists of 7 variables where FIRMCOST can be regarded as 
response variable and others are exploratory variables as follows  

FIRMCOST  total property and casualty premiums and uninsured losses  as a percentage of total assets 
(divided by 100) 

ASSUME  Per occurrence retention amount as a percentage of total assets 
CAP   Indicates that the firm owns a captive insurance company 
SIZELOG  Logarithm of total assets 
INDCOST  A measure of the firm’s industry risk 
CENTRAL  A measure of the importance of the local managers in choosing the amount of risk to be 

retained 
SOPH  A measure of the degree of importance in using analytical tools. 
By applying two regression model to risk assessment, the estimates, standard error, and log likelihood are 

obtained and presented in Table 2.   
 
Table  2  The results of regression coefficients estimation together with log likelihood regarding to MLE and Bayesian methods 

for risk managers cost effectiveness data (n =73) 
 MLE Bayesian 
 Estimates SE Estimates SE 

Intercept -2.122 0.1673 -2.281 0.00028 
1  1.015 3.9709 -9.528 0.00391 

2  2.155 0.3076 1.891 0.00059 

3  -3.835 2.0022 -12.68 0.00409 

4  2.458 2.6014 19.348 0.00656 

5  6.008 2.7650 2.278 0.00473 

6  -8.813 3.0619 -8.906 0.00556 
log likelihood 21.6301 45.6233 

Referring to log likelihood values in Table 2, we can conclude that the Bayesian unit-Lindley regression 
model is more suitable to this data that the unit-Lindley regression model. In conclusion, the regression model 
for risk managers cost effectiveness is 

logit( ) 2.281 9.528ASSUME 1.891 CAP 12.68 SIZELOG 19.348 INDCOSTi i i i i = − − + − +  

   
2.278 CENTRAL 8.906 SOPHi i+ −   

 
In addition, the convergence diagnostics of Gelman and Rubin with respect to 0 1 2 3 4,  ,  ,  ,  ,        5 , 

and  6  are illustrated in Figure 3. The factors of all parameters are near 1, which indicates that each MCMC 

chains is convergent. 
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Figure 3 Gelman plots of MCMC chains related to 0 1 2 3 4 5,  ,  ,  ,  ,        , and  6  respectively for risk assessment data 
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Figure 3 Gelman plots of MCMC chains related to 0 1 2 3 4 5,  ,  ,  ,  ,        , and  6  respectively for risk assessment data 

 

 

 

 

 

 

 
 

   

   

 

Figure 4 Density plots of MCMC chains related to 0 1 2 3 4 5,  ,  ,  ,  ,        , and  6  respectively for risk assessment data 

Conclusions 

The use of Bayesian framework could be recommended to the regression model with bounded response 
variable on (0,1). As there are many authors have suggested the use of Bayesian estimator to linear model 
such as Branscum, Johnson, and Thurmond (2007), Gelman et al. (2008). In this work, the Bayesian unit-
Lindley regression is created. The Normal prior and standardization of exploratory variable is discussed. For 
comparison purposes, the traditional and Bayesian unit-Lindley regression models are applied to two real data. 
There are Gasoline data and Risk assessment data where response variable are gasoline yield and percentage of 
total asset respectively. Remarkably, the Bayesian unit Lindley regression show better results than the unit 
Lindley model in term of log-likelihood values. 
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Appendix 

The JAGS syntax for the Bayesian unit-Lindley regression model is 
BLindley_reg<-function(){ 

for (i in 1:n){ 
zeros[i] ~ dpois(phi[i]) 
phi[i] <- - l[i] + C 
l[i] <- 2*log(1-mu[i])-log(mu[i])-3*log(1-y[i])-(y[i]*(1-
mu[i]))/(mu[i]*(1-y[i])) 
logit(mu[i]) <- inprod(X[i,], beta[]) 
} 
#prior 
for (j in 1:J){ 
beta[j] ~ dnorm(0,0.001) 
} 
} 
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