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Abstract
Let p be a prime number and a, k € N such that gcd(a,p) = 1. We denote the semigroup of integers modulo p* under usual
multiplication by Z,«. Then, the Cayley graph of Z relative to @ is the digraph Cay(Z,x, @), where
|4 (Cay(Zpk,ﬁ)) =Zykand (%,7) € E (Cay(Zpk, d)) if and only if ¥ = xa.
In this paper, we describe the characterization of C ay(Zpk, d). Our objective is to investigate the isomorphism theorem between

two Cayley graphs of Zpk relative to @ and b, respectively, where a and b are both relatively prime to p.
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Introduction

In 1878, Arthur Cayley introduce the notion of Cayley graph for representing the structure of abstract groups
which are described by their generators. The theory of Cayley graphs has been grown into a substantial branch
in algebraic graph theory. It has relations with some classical problems in pure mathematics and many researchers
have paid their attentions to this structure see Konstantinova (2008).

Let I be a digraph, where V(I') is the set of vertices and E(I") the set of edges of I' which is a subset of
V(T) x V(T). An edge joins the initial vertex u to the terminal vertex v is denoted by (u,v). For a semigroup
G and a non-empty subset S of G, the Cayley graph of G relative to S is denoted by Cay(G,S), which is a
digraph with vertex set G and (x,y) is an edge of Cay(G,S) if and only if y = xs for some s € S. In this case,
we called S is the connection set and write Cay (G, a) instead of Cay(G,{a}).

Hosseinzadeh and Assari (2014) considered some operations of Cayley graphs on semigroups. They have
described graph’ s properties which constructed from the interesting operations. Later, Suksumran and Panma
(2015) gave a condition to determine whether or not a Cayley graph of a semigroup is strongly connected and
also characterized weakly connected Cayley graphs of a semigroup. And Khosravi (2016) gave characterization
for Cayley graphs of cancellative semigroup and he gave a criterion to check whether a digraph is a Cayley graph
of a cancellative semigroup. Kelarev and Praeger (2003) studied the transitivity properties of Cayley graph.

In this study, we let Zpk be the set of all integer modulo p* where p is a prime number and k is a positive
integer. It is well-known that Zpk forms a semigroup under the multiplication. The aim of this paper is to prove
isomorphism theorem between Cay(Zpk, d) and Cay(Zpk, B) where @, b € Z,x and gecd(a,p) = ged(b,p) =
1.

Now, we remind some notions that will be used in our study. In this paper, we denote the set of all natural
numbers by N. For two relatively prime positive integers a and n, the least positive integers x such that a* =

1(mod n) is called the order of a modulo n. We denote the order of @ modulo n by ord,a. Moreover, we
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x-1

obtain that the integer a satisfies the equality a(a*~1) = 1(mod n) and it is called an inverse of a modulo

n. We denote the congruence class of a modulo n by a.

Proposition 1. Let p, k € N such that p be a prime number and [,m € {0,1,2, ...,k — 1} withl <m.If G €
Z,k such that gcd(a,p) = 1. Then ord k-ma < 0rd k-1a.
Proof. It follows directly from the fact that p*=™| p*~L,
Proposition 2. Let m,p, k € N be such that p is a prime number and m < k. Then
|{b € N : gcd(b,p*) = p™}| = p*¥™ — p*~"*D where N = {1,2,3, ..., p*}.
Proof. Let T = {b € N : gcd(b, p*) = p™}. Note
that T={beN:p™b}\{b€EN:pm™i|ph}= {pmx tx €{1,2, ...,p""_m}} \ {pm“x 1X E
{12, ...,pk_(m“)}}. Thus |T| = p*™ — pk=(m+1),
Theorem 3. Let a, b, ¢ € Z with 0 < b. Then there exist unique integers q and r satisfying
a=bg+randc<r<b+c.
For a subgraph I' of a Cayley graph Cay(G,S) and an element a in a semigroup G, we define a digraph al’
by V(al') = {ax : x € V(I)} and E(al') = {(ax,ay) : (x,y) € E(T)}.

Main Results

From now on, we let a,p, k € N such that p is a prime number and gcd(a, p) = 1. In this paper, we define
the digraph Py; by V(Py,) =(@)={a":n €N} and E(Py;)={(@a"*'):n€N}. For each i €
{0,1,2,...,k=1} and jEN, define P,; =aPy, where @ =p' and @ € Z \ UZiv(pP,) and
ged(a j, p¥) = p'. In the rest of this paper, we denote the digraph C ay(Zpk, d) without vertex 0 and without
an edge (0,0) by Cay*(Zpk, a).

Theorem 4. Let n; be the smallest positive integer such that

{x ez \ UL, V(P : ged(x,p*) = p'} = @ for each i € {0,1,2 ...,k — 1}.
Then Cay*(Z,x, @) = U5 UL, Py

Proof. We note that if a;,, exists, then {x € L, \ Uiz V(Py) ¢ ged(x, p*) = p'} is a proper subset of
{x e Ly \ Uiz V(Py) ¢ ged(x, p¥) = p'} for each positive integer n such that n < m. This implies that
{xe Z, \ Ui, V(Py) ¢ ged(x, p¥) = p'} = @ for some n € N. Thus, n; exists for eachi = 0,1,...,k — 1.
Let T = U¥3 UL, P;;. Then it is clear that V(T) € Z,k\ 01=v (Cay*(Zpk, d)). We let y € Zk be such
that ged(y,p*) =p' for some i €{0,1,2,...,k —1}. Assume that ¥ € UX, V(P,;). Then y € Z\
Uk, V(Py) and ged(y,p*) = p'. Hence, {x €Z\ UL, V(Py): ged(x,p*¥) =p'} # @, which is a
contradiction. Thus, ¥ € U, V(P,,), which implies V/(T) = V (Cay*(zpk, a)).

Next, we will prove that E (Cay*(zpk, a)) = E(T). Let (%) € E(T) . Then (%, %) € E(P,), where i €
{0,1,2,..,k—1}and j € {123,..,n;}. Thus, (£,7) = (&@;;a",a@;;a"**"), where @;; € Z, \ {0} and n €
N. Hence, (x,y) € E (Cay*(Zpk,c_l)).

Finally, let (X,¥) € E (Cay*(Zpk,c_l)), that is, ¥ = xa. Form X # 0, we suppose that gcd(x, p*) = p',
where i € {0,1,2,...,k — 1}. It follows from above that ¥ € V(P ;) for some j € {1,2,3,...,n;}. Then X =
a;a" and y= a;a"*'

(a;;a" a;;a"*') € E(T') and so E (Cay*(Zpk, C_l)) = E(I"). Thus the graphs Cay*(Zpk, d) and I' are equal.

for some n €N. Since (a",a"*') € E(P,;) , we obtain (X,7) =
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Example 5. Consider Cay(Zg, 3).

0 IN2N3 45 ™S8 9 10 1

Figure 1 Cay(Z,¢,3)

From Theorem 4, we obtain that Cay*(Z]_G, g) = PO,]. U PO,Z U Pl,l U P1,2 U P1’2 U szl U P3’1.

1 3 9 _115 7 15

Figure 2 Py, and P, ,

Figure 3 Py, Py 5, P, 1 and Py

Theorem 6. Let [ € {0,1,2,...,k — 1}. Then ord -1a = [V(P,,)]|.
Proof. Let ordx-ia =m. We will show that V(P,) = {p'a p'a*p'a...,p'a"}. Obviously,

{p'a,p'a® p'a®,...,p'am™} € V(P,,). Let X € V(P,;). Then X = p'a’ for some j € N. Suppose that m < j.

By Theorem 3, j = mq + r for some q,7 € Zand 1 <r <m+ 1. Clearly, 1 < q. Then p'a’/ = p'a™ -

a’(mod p). Hence, a/ = a™ -a" =1-a”" = a’ (mod p*™") since ged(p', p*) = p' and ord k-1a = m.

Therefore, p'a’ = p'a”(mod p*), which implies V(P,,) = {p'a, p'a® p'a®,...,p'a™}.

Next, we will prove that |{p‘a, p'a?, p'as,...,p'a™}| = m. Assume that p'a’ = p'a‘(mod p*), where

0< i<j<m. Since gcd(a'p’,p¥) = p', we obtain that a/~* = 1 (mod p*~!). Hence m < j — i since

ord,k-1a = m. It is a contradiction. Thus, ptal # p'a’ and then we get ord k-1a = |V(Pl,1)|.

Theorem 7. Let [ € {0,1,2,...,k — 1} and m,m’ € {1,2,3,..,n,}. f V(P ) NV (P,,,;) # @, then P;,, =
Lm'

Proof. Suppose that b € V(Pl‘m) N V(Pz,m')~ Then there exist 4,4’ € N such that b = dl,mdh and b =

@, ,y@" . We assume that 4 < /i". From ged(a, p) = 1, we obtain that @, ,, = a, ,va" ™ (mod p¥). This implies

that V(Pl'm) c V(Pl‘m'). Similarly, we can verify that V(Pl‘m') c V(Pl,m) whence Py, = Py

Theorem 8. Let [ €{0,1,2,...,k — 1} and m € {1,2,3, ...,n;}. Then P, ; is isomorphic to P;,,. Moreover,
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ph=l_pk=(+1)

n; = ————, where n; is defined in Theorem 4.
ordpk_la

Proof. Define f : V(P,;) = V(P,,) by
f(p'a") = aypa’ for all p'a" € V(P,,).
Let #,h' € N and suppose that p'a" = ﬁlﬁh’. Since gcd(allm,pk) = p!, there exists ¢ € Z which satisfies
a;m = cp' and ged(c,p*) = 1. Hence,
f(p'a") = a,a" = cp'a" = @zdh' _ dz,mdh, = f (ﬁlah')‘
It follows that f is well- defined. Now, suppose that f(ﬁldh) = f(ﬁldh'), then ﬁl‘mﬁh = &l‘mﬁh’. Since

ged(c, p*) = 1and cp'a’ = cpla’ (mod p¥), we obtain that p'a”

plah’(mod p"). Therefore, f is injective.
It is clear that f is a surjection and a graph homomorphism.

Now, we let ¥ € {b € L,k ged(b, p*) = p'}. Then we get x € Z, ged(x,p*) = p' which implies
X € V(Pl,j) for some j € {1,2,3,...,n;}. Therefore, X € Unmlle(Pl‘m). Let y € Unml=1 V(Pl,m). Then y €
V(P,;) for some j € {1,2,3,...,n;}. So ¥ = @, ;a" for some n € N. Since gcd(a, ;a™ p*) = p', we get y €
{be L : ged(b,p*) = p'} and hence {b € L : ged(b,p) = p'} = Uy, V(P ). Note from Theorem 7
that V(Pl,m) N V(Pl,n) = @ if n # m. From Proposition 2 and P, , is isomorphic to P, ,,,, we have

pk_l - pk_(Hl) = | UZI=1 V(Pl,m) | = ZZI=1 |V(Pl,m)| = |V(Pl,1)|nl-

k=l _ k—(1+1) —

Therefore, p“~" —p

Theorem 9. Let b € Z,J be such that gcd(b,p) = 1. Then Cay(Zpk, C_l) is isomorphic to Cay(Zpk, 5) if

(Opok—la)nl via Theorem 6.

and only if
Opok—za = Ordpk—zb foralll € {0,1,2,...,k —1}.

n

Proof. From Theorem 4, we can suppose that Cay*(Zpk,c_l) = Ui Ujil P;; and Cay*(Zpk,E) =

Ui U;.lil PL-"]-. It is enough to suppose that Cay*(Zpk, C_l) is isomorphic to Cay*(Zpk, E). Let [ €
{1,2,3,..,n";}. From Theorem 6, we will show |V(PL1)| = |V(Pl"1)| instead of ordpk—za = OT'dpk—Lb.

Assume that f: V (Cay*(Zpk, 6_1)) -V (Cay*(Zpk, B)) is an isomorphism. From the definition of P, ,,, we
note that two graphs Py, and Py, are distinct or equal. Then f (V(Pljl)) =V (Pll) for some [ €
{0,1,2,....,k—1}andi € {1,2,3, ,nl} Since f is surjective, there exists m € {0,1,2,...,k — 1} such that
f (V(Pm,]-)) = V(Pl',l) for some j € {1,2,3,...,n,,}. There are four possible cases.
Case 1. m,l' < l. From Theorem 6, 8 and Proposition 1, we have

V() < V()| = V)| = W] <[ ()] = [V (7)) = (Rl
Case 2. | < m,l'. From Theorem 6, 8 and Proposition 1, we have
V(P = VP DI < VP = [VPw )| < V(P

Case 3. m <1l <!l. We claim that there exist s € {[,[+1,...,k—1} andd € {1,2,3,...,ng} such that

f (V(Ps,d)) =V (Pr"dr) for some r € {0,1,2,...,1}and d € {1,2,3,...,n,.}. We suppose not. That is, for

'

each se{l,l+1,...,k—1} and d € {1,2,3,...,n,}, we have f(V(Ps‘d)) = V(Pr,d') for some r € {1 +
L,I+2,... k—1}andd €{1,2,3,...,n.}. From V(Cay*(Zpk, a)) is finite and the injectivity of f, we
obtain that

[{Vv(Psq): s=1 .., k—1landd =12,..,n}| < |{V (P;‘,d') :r=1..,k—1andd =1,2, ...,n'r} .
We note from the prove of Theorem 8 that {¢ € Z,k ged(c,p®) =p"} = U, V(P,,) for all he€
{0,1,2, ...,k — 1}. This implies that
|{6 € Zpk : ged(c,p®) =pfands=1,..,k—1 }| = |U{V(Ps_d) t:s=1..,k—1landd = 1,2, ...,ns}|
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< |U {V (P;”,d') tr=1.,k—1landd =1,2, ...,n'r}
=|{ce Ly : ged(c,p®) =pTandr =1,..,k—1}|
which is a contradiction. Therefore, there exist s € {[,l+ 1,...,k —1}and d € { 1,2, 3,...,ng} such that
f (V(Psyd)) =V (P;Jdr) for some r € {0,1,2,...,1} and d €{1,2,3,...,n.}. From Theorem 6, 8 and

Proposition 1, we have

(el = V(] < V()] < |7 (50| = IV(P)l < V(R
Case 4. ' <l < m. Similarly, there exist s € {0,1,2,...,l} and d € { 1,2,3,...,ng} such that f (V(Psyd)) =
%4 (Pfi,d') forsomer € {l+1,..,k—1}and d € {1,2,3,...,n,}. From Theorem 6, 8 and Proposition 1, we
have

V)| < (Bl = ¥ ()| < VL] = V(B < V(P
From four cases, we get ordpk_za = |V(Pl,1)| = |V(P,/’1)| = OT'dpk—lb. Clearly, it m =1 or ' =1, then
V(P = [V(P,1)|. Thus, ord k-1a = ord k-1b for each € {0,1,2,...,k — 1}.

Suppose that ordpk—za = ordpk_zb for all 1€{0,1,2,...,k—1}. This means that |V(P,{)| =

|V(Pl’_1)| from Theorem 6. It is enough to verify that Cay*(Zpk, C_l) is isomorphic to Cay* (Zpk, l_)). Define

g:V (Cay*(Zpk, 6_1)) -V (Cay*(Zpk, E)) by
g(@;;a") = b; ;b", where i € {0,1,2,...,k—1}, j € {1,2,3,...,n;} and h € N.
It follows from Theorem 8 and our assumption that n; = n'; for all i € {0,1,2,...,k —1}. Suppose that
d,,@" = @y, a", where hh' €N, 5,x €{0,1,2,...,k — 1},7 € {1,23,...,n,} and y € {1,2,3,...,n,}. Since
a, a" € V(P,), c_lx,ya_h’ € V(P.y), we get that P, = P, and so s =x and v =y. Thus @, = a,, and
bs, = by,. Since ag,a" = aslra"’(mod p*) and ged(ag,, p*) = p%, we then have a’ = a" (mod p*=s).
Suppose that & < /', then we obtain 1 = a” ~"(mod p*~*) since gcd(a,p) =1. Let ord k-sa=m =
ord jk-sb so m|(h — I). There exists ¢’ € N such that mc’ +h = h'. Then we have
b" = bme+h = pme'ph = ph (mod pk-s).

From gcd(bs,,p*) = p* and by, = by, we deduce that bs,rbh’ = b, ,b"(mod p*). This implies that g is
well-defined.

Assume that g(ds,rdh) =g (C_lx’yc_lh,), where i,h €N, s,x € {0,1,2,...,k—1},r € {1,2,3,...,n4}
and y € {1,2,3, ..., n,}. Therefore, we have by ,b" = l_)x‘yl_)hl. Since by b" € V(P',,) and l_)x,yl_)h/ EV(P',y),

we have P, = P', ,, which implies that s = x and r = y. Thus, bs, = by, and @, = @y, Since b, b" =

X,y
bs‘rbh'(mod p*) and ged(bg,, p*) = p*, we have b = b" (mod p*=5). We assume that & < 4 then we have
1= bh"h(mod p*=5). This implies that ml(h' = h), where ordpk_sa =m= ordpk_sb. Then there exists ¢ €
N such that mc + & = /. We then have a” = a™q" = a’(mod p*=5). From gcd(as,,p*) = p* and @, =
@y, we obtain that aslrah’ = ax_yah (mod p*). It is easy to show that g is surjective. From the definition of g
and it’s injectivity, we conclude that g is an isomorphism.

Example 10. Consider Cay(Z,¢,3) and Cay(Z,11). From ord,:3 = 4 = ord,s11, ord,«-13 =2 =
ord,311, ord,s-23 = 2 = ord,211, ord,s-33 = 1 = ord,11 and Theorem 9, we then have Cay(Zy,3) is
isomorphic to Cay(Z,s, 11).
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Figure 4 Cay(Zc, 11)
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