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Abstract 
 Let 𝑝𝑝 be a prime number and 𝑎𝑎,𝑘𝑘 ∈ ℕ such that gcd(𝑎𝑎, 𝑝𝑝) = 1.  We denote the semigroup of integers modulo 𝑝𝑝𝑘𝑘 under usual 
multiplication by ℤ𝑝𝑝𝑘𝑘. Then, the Cayley graph of ℤ𝑝𝑝𝑘𝑘 relative to 𝑎̅𝑎 is the digraph 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎), where  

𝑉𝑉 (𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)) = ℤ𝑝𝑝𝑘𝑘 and (𝑥̅𝑥, 𝑦̅𝑦) ∈ 𝐸𝐸 (𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)) if and only if 𝑦̅𝑦 = 𝑥̅𝑥𝑎̅𝑎. 
In this paper, we describe the characterization of 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎). Our objective is to investigate the isomorphism theorem between 

two Cayley graphs of ℤ𝑝𝑝𝑘𝑘 relative to 𝑎̅𝑎 and 𝑏̅𝑏, respectively, where 𝑎𝑎 and 𝑏𝑏 are both relatively prime to 𝑝𝑝.  
 
Keywords: Cayley graph, integer modulo, isomorphism, prime number, semigroup, digraph 

 
Introduction 

 
 In 1878, Arthur Cayley introduce the notion of Cayley graph for representing the structure of abstract groups 
which are described by their generators.  The theory of Cayley graphs has been grown into a substantial branch 
in algebraic graph theory. It has relations with some classical problems in pure mathematics and many researchers 
have paid their attentions to this structure see Konstantinova (2008). 
 Let Γ be a digraph, where 𝑉𝑉(Γ) is the set of vertices and 𝐸𝐸(Γ) the set of edges of Γ which is a subset of 
𝑉𝑉(Γ) × 𝑉𝑉(Γ). An edge joins the initial vertex 𝑢𝑢 to the terminal vertex 𝑣𝑣 is denoted by (𝑢𝑢, 𝑣𝑣). For a semigroup 
𝐺𝐺 and a non- empty subset 𝑆𝑆 of 𝐺𝐺, the Cayley graph of 𝐺𝐺 relative to 𝑆𝑆 is denoted by 𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺, 𝑆𝑆), which is a 
digraph with vertex set 𝐺𝐺 and (𝑥𝑥, 𝑦𝑦) is an edge of 𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺, 𝑆𝑆) if and only if 𝑦𝑦 = 𝑥𝑥𝑥𝑥 for some 𝑠𝑠 ∈ 𝑆𝑆. In this case, 
we called 𝑆𝑆 is the connection set and write 𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺, 𝑎𝑎) instead of 𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺, {𝑎𝑎}). 
 Hosseinzadeh and Assari ( 2014)  considered some operations of Cayley graphs on semigroups.  They have 
described graph’ s properties which constructed from the interesting operations.  Later, Suksumran and Panma 
(2015) gave a condition to determine whether or not a Cayley graph of a semigroup is strongly connected and 
also characterized weakly connected Cayley graphs of a semigroup. And Khosravi (2016) gave characterization 
for Cayley graphs of cancellative semigroup and he gave a criterion to check whether a digraph is a Cayley graph 
of a cancellative semigroup. Kelarev and Praeger (2003) studied the transitivity properties of Cayley graph. 
 In this study, we let ℤ𝑝𝑝𝑘𝑘 be the set of all integer modulo 𝑝𝑝𝑘𝑘 where 𝑝𝑝 is a prime number and 𝑘𝑘 is a positive 
integer. It is well-known that ℤ𝑝𝑝𝑘𝑘 forms a semigroup under the multiplication. The aim of this paper is to prove 
isomorphism theorem between 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎) and 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘 , 𝑏̅𝑏) where 𝑎̅𝑎, 𝑏̅𝑏 ∈ ℤ𝑝𝑝𝑘𝑘 and gcd (𝑎𝑎, 𝑝𝑝) = gcd (𝑏𝑏, 𝑝𝑝) =
1.  
 Now, we remind some notions that will be used in our study.  In this paper, we denote the set of all natural 
numbers by ℕ.  For two relatively prime positive integers 𝑎𝑎 and 𝑛𝑛, the least positive integers 𝑥𝑥 such that 𝑎𝑎𝑥𝑥 ≡
1(mod 𝑛𝑛) is called the order of 𝑎𝑎 modulo 𝑛𝑛.  We denote the order of 𝑎𝑎 modulo 𝑛𝑛 by 𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑎𝑎.  Moreover, we 
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obtain that the integer 𝑎𝑎𝑥𝑥−1 satisfies the equality 𝑎𝑎(𝑎𝑎𝑥𝑥−1) ≡ 1(mod 𝑛𝑛) and it is called an inverse of 𝑎𝑎 modulo 
𝑛𝑛. We denote the congruence class of 𝑎𝑎 modulo 𝑛𝑛 by 𝑎̅𝑎. 
  
  Proposition 1. Let 𝑝𝑝, 𝑘𝑘 ∈ ℕ such that 𝑝𝑝 be a prime number and 𝑙𝑙,𝑚𝑚 ∈ {0,1,2, … , 𝑘𝑘 − 1} with 𝑙𝑙 < 𝑚𝑚. If 𝑎̅𝑎 ∈
ℤ𝑝𝑝𝑘𝑘 such that gcd(𝑎𝑎, 𝑝𝑝) = 1. Then 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑚𝑚𝑎𝑎 ≤ 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎. 
  Proof. It follows directly from the fact that 𝑝𝑝𝑘𝑘−𝑚𝑚| 𝑝𝑝𝑘𝑘−𝑙𝑙.  
  Proposition 2. Let 𝑚𝑚, 𝑝𝑝, 𝑘𝑘 ∈ ℕ be such that 𝑝𝑝 is a prime number and 𝑚𝑚 < 𝑘𝑘. Then  

|{𝑏𝑏 ∈ 𝑁𝑁 ∶ gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑚𝑚}| = 𝑝𝑝𝑘𝑘−𝑚𝑚 − 𝑝𝑝𝑘𝑘−(𝑚𝑚+1) where 𝑁𝑁 = {1,2,3, … , 𝑝𝑝𝑘𝑘}. 
  Proof. Let 𝑇𝑇 = {𝑏𝑏 ∈ 𝑁𝑁 ∶ gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑚𝑚}. Note  
that  𝑇𝑇 = {𝑏𝑏 ∈ 𝑁𝑁 ∶ 𝑝𝑝𝑚𝑚|𝑏𝑏} ∖ {𝑏𝑏 ∈ 𝑁𝑁 ∶ 𝑝𝑝𝑚𝑚+1|𝑏𝑏} = {𝑝𝑝𝑚𝑚𝑥𝑥 ∶ 𝑥𝑥 ∈ {1,2, … , 𝑝𝑝𝑘𝑘−𝑚𝑚}} ∖ {𝑝𝑝𝑚𝑚+1𝑥𝑥 ∶ 𝑥𝑥 ∈
{1,2, … , 𝑝𝑝𝑘𝑘−(𝑚𝑚+1)}}. Thus |𝑇𝑇| = 𝑝𝑝𝑘𝑘−𝑚𝑚 − 𝑝𝑝𝑘𝑘−(𝑚𝑚+1).  
  Theorem 3. Let 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℤ with 0 < 𝑏𝑏. Then there exist unique integers 𝑞𝑞 and 𝑟𝑟 satisfying 

𝑎𝑎 = 𝑏𝑏𝑏𝑏 + 𝑟𝑟 and 𝑐𝑐 ≤ 𝑟𝑟 < 𝑏𝑏 + 𝑐𝑐.  
 For a subgraph Γ of a Cayley graph 𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺, 𝑆𝑆) and an element 𝑎𝑎 in a semigroup 𝐺𝐺, we define a digraph 𝑎𝑎Γ 
by 𝑉𝑉(𝑎𝑎Γ) = {𝑎𝑎𝑎𝑎 ∶ 𝑥𝑥 ∈ 𝑉𝑉(Γ)} and 𝐸𝐸(𝑎𝑎Γ) = {(𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎) ∶ (𝑥𝑥, 𝑦𝑦) ∈ 𝐸𝐸(Γ)}.  
 

Main Results 
 

From now on, we let 𝑎𝑎, 𝑝𝑝, 𝑘𝑘 ∈ ℕ such that 𝑝𝑝 is a prime number and gcd(𝑎𝑎, 𝑝𝑝) = 1. In this paper, we define 
the digraph 𝑃𝑃0,1 by 𝑉𝑉(𝑃𝑃0,1) = 〈𝑎̅𝑎〉 = {𝑎̅𝑎𝑛𝑛 ∶ 𝑛𝑛 ∈ ℕ}  and 𝐸𝐸(𝑃𝑃0,1) = {(𝑎̅𝑎𝑛𝑛, 𝑎̅𝑎𝑛𝑛+1) ∶ 𝑛𝑛 ∈ ℕ}.  For each 𝑖𝑖 ∈
{0, 1, 2, . . . , 𝑘𝑘 − 1}  and 𝑗𝑗 ∈ ℕ,  define 𝑃𝑃𝑖𝑖 ,𝑗𝑗 = 𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑃𝑃0,1 where 𝑎̅𝑎𝑖𝑖,1 = 𝑝̅𝑝𝑖𝑖  and 𝑎̅𝑎𝑖𝑖,𝑗𝑗 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑙𝑙)𝑗𝑗−1

𝑙𝑙=1  and 
gcd(𝑎𝑎𝑖𝑖,𝑗𝑗, 𝑝𝑝𝑘𝑘)  =  𝑝𝑝𝑖𝑖. In the rest of this paper, we denote the digraph 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎) without vertex 0̅ and without 
an edge (0̅, 0̅) by 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎). 
  Theorem 4. Let 𝑛𝑛𝑖𝑖 be the smallest positive integer such that 

{𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑙𝑙)𝑛𝑛𝑖𝑖
𝑖𝑖=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} = ∅ for each 𝑖𝑖 ∈ {0,1,2 … , 𝑘𝑘 − 1}. 

Then 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎) = ⋃ ⋃ 𝑃𝑃𝑖𝑖 ,𝑙𝑙𝑛𝑛𝑖𝑖
𝑙𝑙=1

𝑘𝑘−1
𝑖𝑖=1 . 

  Proof.  We note that if 𝑎𝑎𝑖𝑖,𝑚𝑚 exists, then {𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑙𝑙)𝑚𝑚
𝑙𝑙=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} is a proper subset of 

{𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛
𝑙𝑙=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} for each positive integer 𝑛𝑛 such that 𝑛𝑛 < 𝑚𝑚.  This implies that 

{𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛
𝑙𝑙=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} = ∅ for some 𝑛𝑛 ∈ ℕ.  Thus, 𝑛𝑛𝑖𝑖 exists for each 𝑖𝑖 = 0,1, … , 𝑘𝑘 − 1. 

Let Γ = ⋃ ⋃ 𝑃𝑃𝑖𝑖,𝑙𝑙𝑛𝑛𝑖𝑖
𝑙𝑙=1

𝑘𝑘−1
𝑖𝑖=0 . Then it is clear that 𝑉𝑉(Γ) ⊆ ℤ𝑝𝑝𝑘𝑘 ∖ {0̅} =  𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)). We let 𝑦̅𝑦 ∈ ℤ𝑝𝑝𝑘𝑘 be such 

that gcd(𝑦𝑦, 𝑝𝑝𝑘𝑘)  = 𝑝𝑝𝑖𝑖 for some 𝑖𝑖 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1}.  Assume that 𝑦̅𝑦 ∉ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛𝑖𝑖
𝑙𝑙=1 .  Then 𝑦̅𝑦 ∈ ℤ𝑝𝑝𝑘𝑘 ∖

⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑙𝑙)𝑛𝑛𝑖𝑖
𝑙𝑙=1  and gcd(𝑦𝑦, 𝑝𝑝𝑘𝑘) =  𝑝𝑝𝑖𝑖 .  Hence, {𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛𝑖𝑖

𝑙𝑙=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} ≠ ∅ , which is a 
contradiction. Thus, 𝑦̅𝑦 ∈ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛𝑖𝑖

𝑙𝑙=1 , which implies 𝑉𝑉(Γ) = 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)). 
 Next, we will prove that 𝐸𝐸 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)) = 𝐸𝐸(Γ). Let (𝑥̅𝑥, 𝑦̅𝑦) ∈ 𝐸𝐸(Γ) . Then (𝑥̅𝑥, 𝑦̅𝑦) ∈ 𝐸𝐸(𝑃𝑃𝑖𝑖 ,𝑗𝑗), where 𝑖𝑖 ∈
{ 0, 1, 2, … , 𝑘𝑘 − 1 } and 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑖𝑖}. Thus, (𝑥̅𝑥, 𝑦̅𝑦) =  (𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛 , 𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛+1), where 𝑎̅𝑎𝑖𝑖,𝑗𝑗 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ {0̅} and 𝑛𝑛 ∈
ℕ. Hence, (𝑥̅𝑥, 𝑦̅𝑦) ∈ 𝐸𝐸 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)). 
 Finally, let (𝑥̅𝑥, 𝑦̅𝑦) ∈ 𝐸𝐸 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)), that is, 𝑦̅𝑦 = 𝑥𝑥𝑥𝑥̅̅ ̅.  Form 𝑥̅𝑥 ≠ 0̅, we suppose that gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖, 
where 𝑖𝑖 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1}.  It follows from above that 𝑥̅𝑥 ∈ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑗𝑗) for some 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑖𝑖}.  Then 𝑥̅𝑥 =
𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛  and 𝑦̅𝑦 =  𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛+1  for some 𝑛𝑛 ∈ ℕ.  Since (𝑎̅𝑎𝑛𝑛, 𝑎̅𝑎𝑛𝑛+1) ∈ 𝐸𝐸(𝑃𝑃0,1) , we obtain (𝑥̅𝑥, 𝑦̅𝑦) =
(𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛, 𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛+1) ∈ 𝐸𝐸(Γ) and so 𝐸𝐸 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)) = 𝐸𝐸(Γ). Thus the graphs 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎) and Γ are equal. 
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obtain that the integer 𝑎𝑎𝑥𝑥−1 satisfies the equality 𝑎𝑎(𝑎𝑎𝑥𝑥−1) ≡ 1(mod 𝑛𝑛) and it is called an inverse of 𝑎𝑎 modulo 
𝑛𝑛. We denote the congruence class of 𝑎𝑎 modulo 𝑛𝑛 by 𝑎̅𝑎. 
  
  Proposition 1. Let 𝑝𝑝, 𝑘𝑘 ∈ ℕ such that 𝑝𝑝 be a prime number and 𝑙𝑙,𝑚𝑚 ∈ {0,1,2, … , 𝑘𝑘 − 1} with 𝑙𝑙 < 𝑚𝑚. If 𝑎̅𝑎 ∈
ℤ𝑝𝑝𝑘𝑘 such that gcd(𝑎𝑎, 𝑝𝑝) = 1. Then 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑚𝑚𝑎𝑎 ≤ 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎. 
  Proof. It follows directly from the fact that 𝑝𝑝𝑘𝑘−𝑚𝑚| 𝑝𝑝𝑘𝑘−𝑙𝑙.  
  Proposition 2. Let 𝑚𝑚, 𝑝𝑝, 𝑘𝑘 ∈ ℕ be such that 𝑝𝑝 is a prime number and 𝑚𝑚 < 𝑘𝑘. Then  

|{𝑏𝑏 ∈ 𝑁𝑁 ∶ gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑚𝑚}| = 𝑝𝑝𝑘𝑘−𝑚𝑚 − 𝑝𝑝𝑘𝑘−(𝑚𝑚+1) where 𝑁𝑁 = {1,2,3, … , 𝑝𝑝𝑘𝑘}. 
  Proof. Let 𝑇𝑇 = {𝑏𝑏 ∈ 𝑁𝑁 ∶ gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑚𝑚}. Note  
that  𝑇𝑇 = {𝑏𝑏 ∈ 𝑁𝑁 ∶ 𝑝𝑝𝑚𝑚|𝑏𝑏} ∖ {𝑏𝑏 ∈ 𝑁𝑁 ∶ 𝑝𝑝𝑚𝑚+1|𝑏𝑏} = {𝑝𝑝𝑚𝑚𝑥𝑥 ∶ 𝑥𝑥 ∈ {1,2, … , 𝑝𝑝𝑘𝑘−𝑚𝑚}} ∖ {𝑝𝑝𝑚𝑚+1𝑥𝑥 ∶ 𝑥𝑥 ∈
{1,2, … , 𝑝𝑝𝑘𝑘−(𝑚𝑚+1)}}. Thus |𝑇𝑇| = 𝑝𝑝𝑘𝑘−𝑚𝑚 − 𝑝𝑝𝑘𝑘−(𝑚𝑚+1).  
  Theorem 3. Let 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ ℤ with 0 < 𝑏𝑏. Then there exist unique integers 𝑞𝑞 and 𝑟𝑟 satisfying 

𝑎𝑎 = 𝑏𝑏𝑏𝑏 + 𝑟𝑟 and 𝑐𝑐 ≤ 𝑟𝑟 < 𝑏𝑏 + 𝑐𝑐.  
 For a subgraph Γ of a Cayley graph 𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺, 𝑆𝑆) and an element 𝑎𝑎 in a semigroup 𝐺𝐺, we define a digraph 𝑎𝑎Γ 
by 𝑉𝑉(𝑎𝑎Γ) = {𝑎𝑎𝑎𝑎 ∶ 𝑥𝑥 ∈ 𝑉𝑉(Γ)} and 𝐸𝐸(𝑎𝑎Γ) = {(𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎) ∶ (𝑥𝑥, 𝑦𝑦) ∈ 𝐸𝐸(Γ)}.  
 

Main Results 
 

From now on, we let 𝑎𝑎, 𝑝𝑝, 𝑘𝑘 ∈ ℕ such that 𝑝𝑝 is a prime number and gcd(𝑎𝑎, 𝑝𝑝) = 1. In this paper, we define 
the digraph 𝑃𝑃0,1 by 𝑉𝑉(𝑃𝑃0,1) = 〈𝑎̅𝑎〉 = {𝑎̅𝑎𝑛𝑛 ∶ 𝑛𝑛 ∈ ℕ}  and 𝐸𝐸(𝑃𝑃0,1) = {(𝑎̅𝑎𝑛𝑛, 𝑎̅𝑎𝑛𝑛+1) ∶ 𝑛𝑛 ∈ ℕ}.  For each 𝑖𝑖 ∈
{0, 1, 2, . . . , 𝑘𝑘 − 1}  and 𝑗𝑗 ∈ ℕ,  define 𝑃𝑃𝑖𝑖 ,𝑗𝑗 = 𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑃𝑃0,1 where 𝑎̅𝑎𝑖𝑖,1 = 𝑝̅𝑝𝑖𝑖  and 𝑎̅𝑎𝑖𝑖,𝑗𝑗 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑙𝑙)𝑗𝑗−1

𝑙𝑙=1  and 
gcd(𝑎𝑎𝑖𝑖,𝑗𝑗, 𝑝𝑝𝑘𝑘)  =  𝑝𝑝𝑖𝑖. In the rest of this paper, we denote the digraph 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎) without vertex 0̅ and without 
an edge (0̅, 0̅) by 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎). 
  Theorem 4. Let 𝑛𝑛𝑖𝑖 be the smallest positive integer such that 

{𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑙𝑙)𝑛𝑛𝑖𝑖
𝑖𝑖=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} = ∅ for each 𝑖𝑖 ∈ {0,1,2 … , 𝑘𝑘 − 1}. 

Then 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎) = ⋃ ⋃ 𝑃𝑃𝑖𝑖 ,𝑙𝑙𝑛𝑛𝑖𝑖
𝑙𝑙=1

𝑘𝑘−1
𝑖𝑖=1 . 

  Proof.  We note that if 𝑎𝑎𝑖𝑖,𝑚𝑚 exists, then {𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑙𝑙)𝑚𝑚
𝑙𝑙=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} is a proper subset of 

{𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛
𝑙𝑙=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} for each positive integer 𝑛𝑛 such that 𝑛𝑛 < 𝑚𝑚.  This implies that 

{𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛
𝑙𝑙=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} = ∅ for some 𝑛𝑛 ∈ ℕ.  Thus, 𝑛𝑛𝑖𝑖 exists for each 𝑖𝑖 = 0,1, … , 𝑘𝑘 − 1. 

Let Γ = ⋃ ⋃ 𝑃𝑃𝑖𝑖,𝑙𝑙𝑛𝑛𝑖𝑖
𝑙𝑙=1

𝑘𝑘−1
𝑖𝑖=0 . Then it is clear that 𝑉𝑉(Γ) ⊆ ℤ𝑝𝑝𝑘𝑘 ∖ {0̅} =  𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)). We let 𝑦̅𝑦 ∈ ℤ𝑝𝑝𝑘𝑘 be such 

that gcd(𝑦𝑦, 𝑝𝑝𝑘𝑘)  = 𝑝𝑝𝑖𝑖 for some 𝑖𝑖 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1}.  Assume that 𝑦̅𝑦 ∉ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛𝑖𝑖
𝑙𝑙=1 .  Then 𝑦̅𝑦 ∈ ℤ𝑝𝑝𝑘𝑘 ∖

⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑙𝑙)𝑛𝑛𝑖𝑖
𝑙𝑙=1  and gcd(𝑦𝑦, 𝑝𝑝𝑘𝑘) =  𝑝𝑝𝑖𝑖 .  Hence, {𝑥̅𝑥 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛𝑖𝑖

𝑙𝑙=1 ∶ gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖} ≠ ∅ , which is a 
contradiction. Thus, 𝑦̅𝑦 ∈ ⋃ 𝑉𝑉(𝑃𝑃𝑖𝑖 ,𝑙𝑙)𝑛𝑛𝑖𝑖

𝑙𝑙=1 , which implies 𝑉𝑉(Γ) = 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)). 
 Next, we will prove that 𝐸𝐸 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)) = 𝐸𝐸(Γ). Let (𝑥̅𝑥, 𝑦̅𝑦) ∈ 𝐸𝐸(Γ) . Then (𝑥̅𝑥, 𝑦̅𝑦) ∈ 𝐸𝐸(𝑃𝑃𝑖𝑖 ,𝑗𝑗), where 𝑖𝑖 ∈
{ 0, 1, 2, … , 𝑘𝑘 − 1 } and 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑖𝑖}. Thus, (𝑥̅𝑥, 𝑦̅𝑦) =  (𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛 , 𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛+1), where 𝑎̅𝑎𝑖𝑖,𝑗𝑗 ∈ ℤ𝑝𝑝𝑘𝑘 ∖ {0̅} and 𝑛𝑛 ∈
ℕ. Hence, (𝑥̅𝑥, 𝑦̅𝑦) ∈ 𝐸𝐸 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)). 
 Finally, let (𝑥̅𝑥, 𝑦̅𝑦) ∈ 𝐸𝐸 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)), that is, 𝑦̅𝑦 = 𝑥𝑥𝑥𝑥̅̅ ̅.  Form 𝑥̅𝑥 ≠ 0̅, we suppose that gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑖𝑖, 
where 𝑖𝑖 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1}.  It follows from above that 𝑥̅𝑥 ∈ 𝑉𝑉(𝑃𝑃𝑖𝑖,𝑗𝑗) for some 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑖𝑖}.  Then 𝑥̅𝑥 =
𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛  and 𝑦̅𝑦 =  𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛+1  for some 𝑛𝑛 ∈ ℕ.  Since (𝑎̅𝑎𝑛𝑛, 𝑎̅𝑎𝑛𝑛+1) ∈ 𝐸𝐸(𝑃𝑃0,1) , we obtain (𝑥̅𝑥, 𝑦̅𝑦) =
(𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛, 𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎𝑛𝑛+1) ∈ 𝐸𝐸(Γ) and so 𝐸𝐸 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)) = 𝐸𝐸(Γ). Thus the graphs 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎) and Γ are equal. 

  Example 5. Consider 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ16, 3̅). 

 
Figure 1 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ16, 3̅) 

From Theorem 4, we obtain that 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ16, 3̅) = 𝑃𝑃0,1 ∪ 𝑃𝑃0,2 ∪ 𝑃𝑃1,1 ∪ 𝑃𝑃1,2 ∪ 𝑃𝑃1,2 ∪ 𝑃𝑃2,1 ∪ 𝑃𝑃3,1. 

  

Figure 2 𝑃𝑃0,1 and 𝑃𝑃0,2 

 

Figure 3 𝑃𝑃1,1,𝑃𝑃1,2,𝑃𝑃2,1 and 𝑃𝑃3,1 

  Theorem 6. Let  𝑙𝑙 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1}. Then 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|. 
  Proof.  Let 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = 𝑚𝑚.  We will show that 𝑉𝑉(𝑃𝑃𝑙𝑙,1) =  {𝑝̅𝑝𝑙𝑙𝑎̅𝑎, 𝑝̅𝑝𝑙𝑙𝑎̅𝑎2, 𝑝̅𝑝𝑙𝑙𝑎̅𝑎3, . . . , 𝑝̅𝑝𝑙𝑙𝑎̅𝑎𝑚𝑚}.  Obviously, 
{𝑝̅𝑝𝑙𝑙𝑎̅𝑎, 𝑝̅𝑝𝑙𝑙𝑎̅𝑎2, 𝑝̅𝑝𝑙𝑙𝑎̅𝑎3, . . . , 𝑝̅𝑝𝑙𝑙𝑎̅𝑎𝑚𝑚} ⊆ 𝑉𝑉(𝑃𝑃𝑙𝑙,1). Let 𝑥̅𝑥 ∈ 𝑉𝑉(𝑃𝑃𝑙𝑙,1). Then 𝑥̅𝑥 = 𝑝̅𝑝𝑙𝑙𝑎̅𝑎𝑗𝑗 for some 𝑗𝑗 ∈ ℕ. Suppose that 𝑚𝑚 < 𝑗𝑗. 
By Theorem 3, 𝑗𝑗 = 𝑚𝑚𝑚𝑚 + 𝑟𝑟 for some 𝑞𝑞, 𝑟𝑟 ∈ ℤ and 1 ≤ 𝑟𝑟 < 𝑚𝑚 + 1.  Clearly, 1 ≤ 𝑞𝑞.  Then 𝑝𝑝𝑙𝑙𝑎𝑎𝑗𝑗 ≡  𝑝𝑝𝑙𝑙𝑎𝑎𝑚𝑚𝑚𝑚 ⋅
𝑎𝑎𝑟𝑟(mod 𝑝𝑝𝑘𝑘). Hence, 𝑎𝑎𝑗𝑗 ≡ 𝑎𝑎𝑚𝑚𝑚𝑚 ⋅ 𝑎𝑎𝑟𝑟 ≡ 1 ⋅ 𝑎𝑎𝑟𝑟 = 𝑎𝑎𝑟𝑟  (mod 𝑝𝑝𝑘𝑘−𝑙𝑙) since gcd(𝑝𝑝𝑙𝑙 , 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙  and 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = 𝑚𝑚. 
Therefore, 𝑝𝑝𝑙𝑙𝑎𝑎𝑗𝑗 ≡ 𝑝𝑝𝑙𝑙𝑎𝑎𝑟𝑟(mod 𝑝𝑝𝑘𝑘), which implies 𝑉𝑉(𝑃𝑃𝑙𝑙,1) =  {𝑝̅𝑝𝑙𝑙𝑎̅𝑎, 𝑝̅𝑝𝑙𝑙𝑎̅𝑎2, 𝑝̅𝑝𝑙𝑙𝑎̅𝑎3, . . . , 𝑝̅𝑝𝑙𝑙𝑎̅𝑎𝑚𝑚}. 
 Next, we will prove that |{𝑝̅𝑝𝑙𝑙𝑎̅𝑎, 𝑝̅𝑝𝑙𝑙𝑎̅𝑎2, 𝑝̅𝑝𝑙𝑙𝑎̅𝑎3, . . . , 𝑝̅𝑝𝑙𝑙𝑎̅𝑎𝑚𝑚}| = 𝑚𝑚.  Assume that 𝑝𝑝𝑙𝑙𝑎𝑎𝑗𝑗 ≡ 𝑝𝑝𝑙𝑙𝑎𝑎𝑖𝑖(mod 𝑝𝑝𝑘𝑘), where 
0 <  𝑖𝑖 < 𝑗𝑗 ≤ 𝑚𝑚.  Since gcd(𝑎𝑎𝑖𝑖𝑝𝑝𝑙𝑙 , 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙 , we obtain that 𝑎𝑎𝑗𝑗−𝑖𝑖 ≡ 1 (mod 𝑝𝑝𝑘𝑘−𝑙𝑙).  Hence 𝑚𝑚 ≤ 𝑗𝑗 − 𝑖𝑖 since 
𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = 𝑚𝑚. It is a contradiction. Thus, 𝑝̅𝑝𝑙𝑙𝑎̅𝑎𝑖𝑖 ≠ 𝑝̅𝑝𝑙𝑙𝑎̅𝑎𝑗𝑗 and then we get 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|. 
  Theorem 7.  Let 𝑙𝑙 ∈ {0,1,2, … , 𝑘𝑘 − 1} and 𝑚𝑚,𝑚𝑚′ ∈ {1,2,3, . . ,𝑛𝑛𝑙𝑙}. If 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚) ∩ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚′) ≠ ∅, then 𝑃𝑃𝑙𝑙,𝑚𝑚 =
𝑃𝑃𝑙𝑙,𝑚𝑚′ . 
  Proof.  Suppose that 𝑏̅𝑏 ∈ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚) ∩ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚′).  Then there exist ℎ , ℎ′ ∈ ℕ such that 𝑏̅𝑏 = 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ and 𝑏̅𝑏 =
𝑎̅𝑎𝑙𝑙,𝑚𝑚′𝑎̅𝑎ℎ′. We assume that ℎ ≤ ℎ′. From gcd(𝑎𝑎, 𝑝𝑝) = 1, we obtain that 𝑎𝑎𝑙𝑙,𝑚𝑚 ≡ 𝑎𝑎𝑙𝑙,𝑚𝑚′𝑎𝑎ℎ′−ℎ (mod 𝑝𝑝𝑘𝑘).  This implies 
that 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚) ⊆ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚′). Similarly, we can verify that 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚′) ⊆ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚) whence 𝑃𝑃𝑙𝑙,𝑚𝑚 = 𝑃𝑃𝑙𝑙,𝑚𝑚′.  
  Theorem 8. Let 𝑙𝑙 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1} and 𝑚𝑚 ∈ {1,2,3, … ,𝑛𝑛𝑙𝑙}. Then 𝑃𝑃𝑙𝑙 ,1 is isomorphic to 𝑃𝑃𝑙𝑙,𝑚𝑚. Moreover, 
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𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎
, where 𝑛𝑛𝑙𝑙 is defined in Theorem 4. 

  Proof. Define 𝑓𝑓 ∶ 𝑉𝑉(𝑃𝑃𝑙𝑙,1) → 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚) by 
𝑓𝑓(𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ) = 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ for all 𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ ∈ 𝑉𝑉(𝑃𝑃𝑙𝑙,1). 

Let ℎ , ℎ′ ∈ ℕ and suppose that 𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ = 𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ′. Since  gcd(𝑎𝑎𝑙𝑙,𝑚𝑚, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙 , there exists 𝑐𝑐 ∈ ℤ which satisfies 
𝑎𝑎𝑙𝑙,𝑚𝑚 = 𝑐𝑐𝑝𝑝𝑙𝑙 and gcd(𝑐𝑐, 𝑝𝑝𝑘𝑘) = 1. Hence, 

𝑓𝑓(𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ) = 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ = 𝑐𝑐𝑐𝑐̅̅ ̅𝑙𝑙𝑎̅𝑎ℎ = 𝑐𝑐𝑐𝑐̅̅ ̅𝑙𝑙𝑎̅𝑎ℎ′ = 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ′ =  𝑓𝑓 (𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ′). 
It follows that 𝑓𝑓  is well- defined.  Now, suppose that 𝑓𝑓(𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ) =  𝑓𝑓 (𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ′), then 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ = 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ′. Since 
gcd(𝑐𝑐, 𝑝𝑝𝑘𝑘) = 1 and 𝑐𝑐𝑝𝑝𝑙𝑙𝑎𝑎ℎ ≡ 𝑐𝑐𝑝𝑝𝑙𝑙𝑎𝑎ℎ′(mod 𝑝𝑝𝑘𝑘), we obtain that 𝑝𝑝𝑙𝑙𝑎𝑎ℎ ≡ 𝑝𝑝𝑙𝑙𝑎𝑎ℎ′(mod 𝑝𝑝𝑘𝑘). Therefore, 𝑓𝑓 is injective. 
It is clear that 𝑓𝑓 is a surjection and a graph homomorphism. 
 Now, we let 𝑥̅𝑥 ∈ {𝑏̅𝑏 ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙}.  Then we get 𝑥𝑥 ∈ ℤ, gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙 which implies  
𝑥̅𝑥 ∈ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑗𝑗) for some 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑙𝑙}.  Therefore, 𝑥̅𝑥 ∈ ⋃ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)𝑛𝑛𝑙𝑙

𝑚𝑚=1 .  Let 𝑦̅𝑦 ∈ ⋃ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)𝑛𝑛𝑙𝑙
𝑚𝑚=1 .  Then 𝑦̅𝑦 ∈

𝑉𝑉(𝑃𝑃𝑙𝑙,𝑗𝑗) for some 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑙𝑙}.  So 𝑦̅𝑦 = 𝑎̅𝑎𝑙𝑙,𝑗𝑗𝑎̅𝑎𝑛𝑛 for some 𝑛𝑛 ∈ ℕ.  Since gcd(𝑎𝑎𝑙𝑙,𝑗𝑗𝑎𝑎𝑛𝑛 , 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙 , we get 𝑦̅𝑦 ∈
{𝑏̅𝑏 ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙} and hence {𝑏̅𝑏 ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙} = ⋃ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)𝑛𝑛𝑙𝑙

𝑚𝑚=1 . Note from Theorem 7  
that 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚) ∩ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑛𝑛) = ∅ if 𝑛𝑛 ≠ 𝑚𝑚. From Proposition 2 and  𝑃𝑃𝑙𝑙,1 is isomorphic to 𝑃𝑃𝑙𝑙,𝑚𝑚, we have  

𝑝𝑝𝑘𝑘−𝑙𝑙 − 𝑝𝑝𝑘𝑘−(𝑙𝑙+1) = |⋃ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)𝑛𝑛𝑙𝑙
𝑚𝑚=1 | = ∑ |𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)|𝑛𝑛𝑙𝑙

𝑚𝑚=1 = |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|𝑛𝑛𝑙𝑙. 
Therefore, 𝑝𝑝𝑘𝑘−𝑙𝑙 − 𝑝𝑝𝑘𝑘−(𝑙𝑙+1) = (𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎)𝑛𝑛𝑙𝑙 via Theorem 6. 
 Theorem 9.  Let 𝑏̅𝑏 ∈ ℤ𝑝𝑝𝑘𝑘 be such that gcd(𝑏𝑏, 𝑝𝑝) = 1. Then 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎) is isomorphic to 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘 , 𝑏̅𝑏) if 
and only if 

𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑏𝑏 for all 𝑙𝑙 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1}. 
  Proof.  From Theorem 4, we can suppose that 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎) = ⋃ ⋃ 𝑃𝑃𝑖𝑖,𝑗𝑗𝑛𝑛𝑖𝑖

𝑗𝑗=1
𝑘𝑘−1
𝑖𝑖=1  and 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑏̅𝑏) =

⋃ ⋃ 𝑃𝑃𝑖𝑖,𝑗𝑗′
𝑛𝑛𝑖𝑖′
𝑗𝑗=1

𝑘𝑘−1
𝑖𝑖=1 .  It is enough to suppose that 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)  is isomorphic to 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑏̅𝑏).  Let 𝑙𝑙 ∈

{1,2,3, … ,𝑛𝑛′
𝑖𝑖}.  From Theorem 6, we will show |V(𝑃𝑃𝑙𝑙,1)|  =  |V(𝑃𝑃𝑙𝑙,1′ )|  instead of 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑏𝑏. 

 Assume that 𝑓𝑓: 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)) → 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑏̅𝑏)) is an isomorphism. From the definition of 𝑃𝑃𝑙𝑙,𝑚𝑚, we 
note that two graphs 𝑃𝑃𝑙𝑙,𝑚𝑚 and 𝑃𝑃𝑙𝑙′,𝑚𝑚′  are distinct or equal.  Then 𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑙𝑙,1)) = 𝑉𝑉 (𝑃𝑃𝑙𝑙′,𝑖𝑖

′ )  for some 𝑙𝑙′ ∈
{ 0, 1, 2, . . . , 𝑘𝑘 − 1} and 𝑖𝑖 ∈ {1,2,3, … ,𝑛𝑛𝑙𝑙′

′ }.  Since 𝑓𝑓 is surjective, there exists 𝑚𝑚 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1} such that 
𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑚𝑚,𝑗𝑗)) = 𝑉𝑉(𝑃𝑃𝑙𝑙 ,1

′ ) for some 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑚𝑚}. There are four possible cases. 
Case 1. 𝑚𝑚, 𝑙𝑙′ < 𝑙𝑙. From Theorem 6, 8 and Proposition 1, we have 

|𝑉𝑉(𝑃𝑃𝑙𝑙,1)| ≤ |𝑉𝑉(𝑃𝑃𝑚𝑚,1)| = |𝑉𝑉(𝑃𝑃𝑚𝑚,𝑗𝑗)| = |𝑉𝑉(𝑃𝑃𝑙𝑙,1′ )| ≤ |𝑉𝑉 (𝑃𝑃𝑙𝑙′,1
′ )| = |𝑉𝑉 (𝑃𝑃𝑙𝑙′,𝑖𝑖

′ )|  =  |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|. 
Case 2. 𝑙𝑙 < 𝑚𝑚, 𝑙𝑙′. From Theorem 6, 8 and Proposition 1, we have 

|𝑉𝑉(𝑃𝑃𝑙𝑙,1)|  =  |𝑉𝑉(𝑃𝑃𝑙𝑙′,𝑖𝑖
′ )| ≤ |𝑉𝑉(𝑃𝑃𝑙𝑙,1′ )| = |𝑉𝑉(𝑃𝑃𝑚𝑚,𝑗𝑗)| ≤ |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|. 

Case 3.   𝑚𝑚 < 𝑙𝑙 < 𝑙𝑙′.  We claim that there exist 𝑠𝑠 ∈ {𝑙𝑙, 𝑙𝑙 + 1, . . . , 𝑘𝑘 − 1} and 𝑑𝑑 ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑠𝑠} such that 
𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑)) = 𝑉𝑉 (𝑃𝑃𝑟𝑟 ,𝑑𝑑′

′ ) for some 𝑟𝑟 ∈ { 0, 1, 2, . . . , 𝑙𝑙} and 𝑑𝑑′ ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑟𝑟′ }.  We suppose not.  That is, for 
each 𝑠𝑠 ∈ {𝑙𝑙, 𝑙𝑙 + 1, . . . , 𝑘𝑘 − 1} and 𝑑𝑑 ∈ {1, 2, 3, . . . ,𝑛𝑛𝑠𝑠} , we have 𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑)) = 𝑉𝑉 (𝑃𝑃𝑟𝑟,𝑑𝑑′

′ ) for some 𝑟𝑟 ∈ { 𝑙𝑙 +
1, 𝑙𝑙 + 2, . . . , 𝑘𝑘 − 1} and 𝑑𝑑′ ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑟𝑟′ }.  From 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)) is finite and the injectivity of 𝑓𝑓, we 
obtain that  
|{𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑) ∶  𝑠𝑠 = 𝑙𝑙, … , 𝑘𝑘 − 1 and 𝑑𝑑 = 1,2, … ,𝑛𝑛𝑠𝑠}| <  |{𝑉𝑉 (𝑃𝑃𝑟𝑟,𝑑𝑑′

′ ) ∶ 𝑟𝑟 =  𝑙𝑙, … , 𝑘𝑘 − 1 and 𝑑𝑑′ = 1,2, … ,𝑛𝑛′
𝑟𝑟}|. 

We note from the prove of Theorem 8 that {𝑐𝑐̅ ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑐𝑐, 𝑝𝑝𝑘𝑘) = 𝑝𝑝ℎ} = ⋃ 𝑉𝑉(𝑃𝑃ℎ,𝑡𝑡)𝑛𝑛ℎ
𝑡𝑡=1  for all ℎ ∈

{0,1, 2, … , 𝑘𝑘 − 1}. This implies that  
|{𝑐𝑐̅ ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑐𝑐, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑠𝑠 and 𝑠𝑠 = 𝑙𝑙, … ,𝑘𝑘 − 1 }|  = |⋃{𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑) ∶  𝑠𝑠 = 𝑙𝑙, … , 𝑘𝑘 − 1 and 𝑑𝑑 = 1,2, … ,𝑛𝑛𝑠𝑠}| 
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𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎
, where 𝑛𝑛𝑙𝑙 is defined in Theorem 4. 

  Proof. Define 𝑓𝑓 ∶ 𝑉𝑉(𝑃𝑃𝑙𝑙,1) → 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚) by 
𝑓𝑓(𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ) = 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ for all 𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ ∈ 𝑉𝑉(𝑃𝑃𝑙𝑙,1). 

Let ℎ , ℎ′ ∈ ℕ and suppose that 𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ = 𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ′. Since  gcd(𝑎𝑎𝑙𝑙,𝑚𝑚, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙 , there exists 𝑐𝑐 ∈ ℤ which satisfies 
𝑎𝑎𝑙𝑙,𝑚𝑚 = 𝑐𝑐𝑝𝑝𝑙𝑙 and gcd(𝑐𝑐, 𝑝𝑝𝑘𝑘) = 1. Hence, 

𝑓𝑓(𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ) = 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ = 𝑐𝑐𝑐𝑐̅̅ ̅𝑙𝑙𝑎̅𝑎ℎ = 𝑐𝑐𝑐𝑐̅̅ ̅𝑙𝑙𝑎̅𝑎ℎ′ = 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ′ =  𝑓𝑓 (𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ′). 
It follows that 𝑓𝑓  is well- defined.  Now, suppose that 𝑓𝑓(𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ) =  𝑓𝑓 (𝑝̅𝑝𝑙𝑙𝑎̅𝑎ℎ′), then 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ = 𝑎̅𝑎𝑙𝑙,𝑚𝑚𝑎̅𝑎ℎ′. Since 
gcd(𝑐𝑐, 𝑝𝑝𝑘𝑘) = 1 and 𝑐𝑐𝑝𝑝𝑙𝑙𝑎𝑎ℎ ≡ 𝑐𝑐𝑝𝑝𝑙𝑙𝑎𝑎ℎ′(mod 𝑝𝑝𝑘𝑘), we obtain that 𝑝𝑝𝑙𝑙𝑎𝑎ℎ ≡ 𝑝𝑝𝑙𝑙𝑎𝑎ℎ′(mod 𝑝𝑝𝑘𝑘). Therefore, 𝑓𝑓 is injective. 
It is clear that 𝑓𝑓 is a surjection and a graph homomorphism. 
 Now, we let 𝑥̅𝑥 ∈ {𝑏̅𝑏 ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙}.  Then we get 𝑥𝑥 ∈ ℤ, gcd(𝑥𝑥, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙 which implies  
𝑥̅𝑥 ∈ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑗𝑗) for some 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑙𝑙}.  Therefore, 𝑥̅𝑥 ∈ ⋃ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)𝑛𝑛𝑙𝑙

𝑚𝑚=1 .  Let 𝑦̅𝑦 ∈ ⋃ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)𝑛𝑛𝑙𝑙
𝑚𝑚=1 .  Then 𝑦̅𝑦 ∈

𝑉𝑉(𝑃𝑃𝑙𝑙,𝑗𝑗) for some 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑙𝑙}.  So 𝑦̅𝑦 = 𝑎̅𝑎𝑙𝑙,𝑗𝑗𝑎̅𝑎𝑛𝑛 for some 𝑛𝑛 ∈ ℕ.  Since gcd(𝑎𝑎𝑙𝑙,𝑗𝑗𝑎𝑎𝑛𝑛 , 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙 , we get 𝑦̅𝑦 ∈
{𝑏̅𝑏 ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙} and hence {𝑏̅𝑏 ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑏𝑏, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑙𝑙} = ⋃ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)𝑛𝑛𝑙𝑙

𝑚𝑚=1 . Note from Theorem 7  
that 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚) ∩ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑛𝑛) = ∅ if 𝑛𝑛 ≠ 𝑚𝑚. From Proposition 2 and  𝑃𝑃𝑙𝑙,1 is isomorphic to 𝑃𝑃𝑙𝑙,𝑚𝑚, we have  

𝑝𝑝𝑘𝑘−𝑙𝑙 − 𝑝𝑝𝑘𝑘−(𝑙𝑙+1) = |⋃ 𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)𝑛𝑛𝑙𝑙
𝑚𝑚=1 | = ∑ |𝑉𝑉(𝑃𝑃𝑙𝑙,𝑚𝑚)|𝑛𝑛𝑙𝑙

𝑚𝑚=1 = |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|𝑛𝑛𝑙𝑙. 
Therefore, 𝑝𝑝𝑘𝑘−𝑙𝑙 − 𝑝𝑝𝑘𝑘−(𝑙𝑙+1) = (𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎)𝑛𝑛𝑙𝑙 via Theorem 6. 
 Theorem 9.  Let 𝑏̅𝑏 ∈ ℤ𝑝𝑝𝑘𝑘 be such that gcd(𝑏𝑏, 𝑝𝑝) = 1. Then 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎) is isomorphic to 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ𝑝𝑝𝑘𝑘 , 𝑏̅𝑏) if 
and only if 

𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑏𝑏 for all 𝑙𝑙 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1}. 
  Proof.  From Theorem 4, we can suppose that 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎) = ⋃ ⋃ 𝑃𝑃𝑖𝑖,𝑗𝑗𝑛𝑛𝑖𝑖

𝑗𝑗=1
𝑘𝑘−1
𝑖𝑖=1  and 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑏̅𝑏) =

⋃ ⋃ 𝑃𝑃𝑖𝑖,𝑗𝑗′
𝑛𝑛𝑖𝑖′
𝑗𝑗=1

𝑘𝑘−1
𝑖𝑖=1 .  It is enough to suppose that 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑎̅𝑎)  is isomorphic to 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑏̅𝑏).  Let 𝑙𝑙 ∈

{1,2,3, … ,𝑛𝑛′
𝑖𝑖}.  From Theorem 6, we will show |V(𝑃𝑃𝑙𝑙,1)|  =  |V(𝑃𝑃𝑙𝑙,1′ )|  instead of 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑏𝑏. 

 Assume that 𝑓𝑓: 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)) → 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑏̅𝑏)) is an isomorphism. From the definition of 𝑃𝑃𝑙𝑙,𝑚𝑚, we 
note that two graphs 𝑃𝑃𝑙𝑙,𝑚𝑚 and 𝑃𝑃𝑙𝑙′,𝑚𝑚′  are distinct or equal.  Then 𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑙𝑙,1)) = 𝑉𝑉 (𝑃𝑃𝑙𝑙′,𝑖𝑖

′ )  for some 𝑙𝑙′ ∈
{ 0, 1, 2, . . . , 𝑘𝑘 − 1} and 𝑖𝑖 ∈ {1,2,3, … ,𝑛𝑛𝑙𝑙′

′ }.  Since 𝑓𝑓 is surjective, there exists 𝑚𝑚 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1} such that 
𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑚𝑚,𝑗𝑗)) = 𝑉𝑉(𝑃𝑃𝑙𝑙 ,1

′ ) for some 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑚𝑚}. There are four possible cases. 
Case 1. 𝑚𝑚, 𝑙𝑙′ < 𝑙𝑙. From Theorem 6, 8 and Proposition 1, we have 

|𝑉𝑉(𝑃𝑃𝑙𝑙,1)| ≤ |𝑉𝑉(𝑃𝑃𝑚𝑚,1)| = |𝑉𝑉(𝑃𝑃𝑚𝑚,𝑗𝑗)| = |𝑉𝑉(𝑃𝑃𝑙𝑙,1′ )| ≤ |𝑉𝑉 (𝑃𝑃𝑙𝑙′,1
′ )| = |𝑉𝑉 (𝑃𝑃𝑙𝑙′,𝑖𝑖

′ )|  =  |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|. 
Case 2. 𝑙𝑙 < 𝑚𝑚, 𝑙𝑙′. From Theorem 6, 8 and Proposition 1, we have 

|𝑉𝑉(𝑃𝑃𝑙𝑙,1)|  =  |𝑉𝑉(𝑃𝑃𝑙𝑙′,𝑖𝑖
′ )| ≤ |𝑉𝑉(𝑃𝑃𝑙𝑙,1′ )| = |𝑉𝑉(𝑃𝑃𝑚𝑚,𝑗𝑗)| ≤ |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|. 

Case 3.   𝑚𝑚 < 𝑙𝑙 < 𝑙𝑙′.  We claim that there exist 𝑠𝑠 ∈ {𝑙𝑙, 𝑙𝑙 + 1, . . . , 𝑘𝑘 − 1} and 𝑑𝑑 ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑠𝑠} such that 
𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑)) = 𝑉𝑉 (𝑃𝑃𝑟𝑟 ,𝑑𝑑′

′ ) for some 𝑟𝑟 ∈ { 0, 1, 2, . . . , 𝑙𝑙} and 𝑑𝑑′ ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑟𝑟′ }.  We suppose not.  That is, for 
each 𝑠𝑠 ∈ {𝑙𝑙, 𝑙𝑙 + 1, . . . , 𝑘𝑘 − 1} and 𝑑𝑑 ∈ {1, 2, 3, . . . ,𝑛𝑛𝑠𝑠} , we have 𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑)) = 𝑉𝑉 (𝑃𝑃𝑟𝑟,𝑑𝑑′

′ ) for some 𝑟𝑟 ∈ { 𝑙𝑙 +
1, 𝑙𝑙 + 2, . . . , 𝑘𝑘 − 1} and 𝑑𝑑′ ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑟𝑟′ }.  From 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)) is finite and the injectivity of 𝑓𝑓, we 
obtain that  
|{𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑) ∶  𝑠𝑠 = 𝑙𝑙, … , 𝑘𝑘 − 1 and 𝑑𝑑 = 1,2, … ,𝑛𝑛𝑠𝑠}| <  |{𝑉𝑉 (𝑃𝑃𝑟𝑟,𝑑𝑑′

′ ) ∶ 𝑟𝑟 =  𝑙𝑙, … , 𝑘𝑘 − 1 and 𝑑𝑑′ = 1,2, … ,𝑛𝑛′
𝑟𝑟}|. 

We note from the prove of Theorem 8 that {𝑐𝑐̅ ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑐𝑐, 𝑝𝑝𝑘𝑘) = 𝑝𝑝ℎ} = ⋃ 𝑉𝑉(𝑃𝑃ℎ,𝑡𝑡)𝑛𝑛ℎ
𝑡𝑡=1  for all ℎ ∈

{0,1, 2, … , 𝑘𝑘 − 1}. This implies that  
|{𝑐𝑐̅ ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑐𝑐, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑠𝑠 and 𝑠𝑠 = 𝑙𝑙, … ,𝑘𝑘 − 1 }|  = |⋃{𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑) ∶  𝑠𝑠 = 𝑙𝑙, … , 𝑘𝑘 − 1 and 𝑑𝑑 = 1,2, … ,𝑛𝑛𝑠𝑠}| 

  < |⋃ {𝑉𝑉 (𝑃𝑃𝑟𝑟,𝑑𝑑′
′ ) ∶ 𝑟𝑟 =  𝑙𝑙, … , 𝑘𝑘 − 1 and 𝑑𝑑′ = 1,2, … ,𝑛𝑛′

𝑟𝑟}| 
  = |{𝑐𝑐̅ ∈ ℤ𝑝𝑝𝑘𝑘 ∶  gcd(𝑐𝑐, 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑟𝑟 and 𝑟𝑟 = 𝑙𝑙, … , 𝑘𝑘 − 1 }|  
which is a contradiction. Therefore, there exist 𝑠𝑠 ∈ {𝑙𝑙, 𝑙𝑙 + 1, . . . , 𝑘𝑘 − 1} and 𝑑𝑑 ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑠𝑠} such that 
𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑)) = 𝑉𝑉 (𝑃𝑃𝑟𝑟 ,𝑑𝑑′

′ ) for some 𝑟𝑟 ∈ { 0, 1, 2, . . . , 𝑙𝑙} and 𝑑𝑑′ ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑟𝑟′ }. From Theorem 6, 8 and 
Proposition 1, we have 

|𝑉𝑉(𝑃𝑃𝑙𝑙,1)| = |𝑉𝑉(𝑃𝑃′𝑙𝑙′,𝑖𝑖)| ≤ |𝑉𝑉(𝑃𝑃′
𝑙𝑙,1)| ≤ |𝑉𝑉 (𝑃𝑃𝑟𝑟,𝑑𝑑′

′ )| = |𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑)| ≤ |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|. 
Case 4. 𝑙𝑙′ < 𝑙𝑙 < 𝑚𝑚. Similarly, there exist 𝑠𝑠 ∈ {0,1,2, . . . , 𝑙𝑙} and 𝑑𝑑 ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑠𝑠} such that 𝑓𝑓 (𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑)) =
𝑉𝑉 (𝑃𝑃𝑟𝑟,𝑑𝑑′

′ ) for some 𝑟𝑟 ∈ {𝑙𝑙 + 1, … ,𝑘𝑘 − 1} and 𝑑𝑑′ ∈ { 1, 2, 3, . . . ,𝑛𝑛𝑟𝑟′ }. From Theorem 6, 8 and Proposition 1, we 
have 

|𝑉𝑉(𝑃𝑃𝑙𝑙,1)| ≤ |𝑉𝑉(𝑃𝑃𝑠𝑠,𝑑𝑑)| = |𝑉𝑉 (𝑃𝑃𝑟𝑟,𝑑𝑑′
′ )| ≤ |𝑉𝑉(𝑃𝑃𝑙𝑙,1′ )| = |𝑉𝑉(𝑃𝑃𝑚𝑚,𝑗𝑗)| ≤ |𝑉𝑉(𝑃𝑃𝑙𝑙,1)|. 

From four cases, we get 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = |𝑉𝑉(𝑃𝑃𝑙𝑙,1)| = |𝑉𝑉(𝑃𝑃𝑙𝑙,1′ )| = 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑏𝑏.  Clearly, if 𝑚𝑚 = 𝑙𝑙  or 𝑙𝑙′ = 𝑙𝑙 , then 
|𝑉𝑉(𝑃𝑃𝑙𝑙,1)| = |𝑉𝑉(𝑃𝑃𝑙𝑙,1′ )|. Thus, 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑏𝑏 for each 𝑙𝑙 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1}. 

Suppose that 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑙𝑙𝑏𝑏  for all 𝑙𝑙 ∈ { 0, 1, 2, . . . , 𝑘𝑘 − 1 }.  This means that |𝑉𝑉(𝑃𝑃𝑙𝑙,1)| =
|𝑉𝑉(𝑃𝑃𝑙𝑙,1′ )|  from Theorem 6.  It is enough to verify that 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎) is isomorphic to 𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘 , 𝑏̅𝑏).  Define  
𝑔𝑔 ∶ 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑎̅𝑎)) → 𝑉𝑉 (𝐶𝐶𝐶𝐶𝑦𝑦∗(ℤ𝑝𝑝𝑘𝑘, 𝑏̅𝑏)) by  

𝑔𝑔(𝑎̅𝑎𝑖𝑖,𝑗𝑗𝑎̅𝑎ℎ) = 𝑏̅𝑏𝑖𝑖,𝑗𝑗𝑏̅𝑏ℎ, where 𝑖𝑖 ∈ { 0, 1, 2, . . . , 𝑘𝑘 − 1 }, 𝑗𝑗 ∈ {1,2,3, … ,𝑛𝑛𝑙𝑙} and ℎ ∈ ℕ. 

It follows from Theorem 8 and our assumption that 𝑛𝑛𝑖𝑖 = 𝑛𝑛′𝑖𝑖  for all 𝑖𝑖 ∈ { 0, 1, 2, . . . , 𝑘𝑘 − 1 }.  Suppose that 
𝑎̅𝑎𝑠𝑠,𝑟𝑟𝑎̅𝑎ℎ = 𝑎̅𝑎𝑥𝑥,𝑦𝑦𝑎̅𝑎ℎ′, where ℎ, ℎ′ ∈ ℕ, 𝑠𝑠, 𝑥𝑥 ∈ {0, 1, 2, . . . , 𝑘𝑘 − 1}, 𝑟𝑟 ∈ {1,2,3, … ,𝑛𝑛𝑠𝑠} and 𝑦𝑦 ∈ {1,2,3, … ,𝑛𝑛𝑥𝑥}.  Since 
𝑎̅𝑎𝑠𝑠,𝑟𝑟𝑎̅𝑎ℎ ∈ 𝑉𝑉(𝑃𝑃𝑠𝑠,𝑟𝑟),  𝑎̅𝑎𝑥𝑥,𝑦𝑦𝑎̅𝑎ℎ′ ∈ 𝑉𝑉(𝑃𝑃𝑥𝑥,𝑦𝑦), we get that 𝑃𝑃𝑠𝑠,𝑟𝑟 = 𝑃𝑃𝑥𝑥,𝑦𝑦  and so 𝑠𝑠 = 𝑥𝑥 and 𝑟𝑟 = 𝑦𝑦.  Thus 𝑎̅𝑎𝑠𝑠,𝑟𝑟 = 𝑎̅𝑎𝑥𝑥,𝑦𝑦  and 
𝑏̅𝑏𝑠𝑠,𝑟𝑟 = 𝑏̅𝑏𝑥𝑥,𝑦𝑦.  Since 𝑎𝑎𝑠𝑠,𝑟𝑟𝑎𝑎ℎ ≡ 𝑎𝑎𝑠𝑠,𝑟𝑟𝑎𝑎ℎ′(mod 𝑝𝑝𝑘𝑘)  and gcd(𝑎𝑎𝑠𝑠,𝑟𝑟 , 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑠𝑠,  we then have 𝑎𝑎ℎ ≡ 𝑎𝑎ℎ′  (mod 𝑝𝑝𝑘𝑘−𝑠𝑠). 
Suppose that ℎ < ℎ′ , then we obtain 1 ≡ 𝑎𝑎ℎ′−ℎ(mod 𝑝𝑝𝑘𝑘−𝑠𝑠) since  gcd(𝑎𝑎, 𝑝𝑝) = 1.  Let 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑠𝑠𝑎𝑎 = 𝑚𝑚 =
 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑠𝑠𝑏𝑏 so 𝑚𝑚|(ℎ′ − ℎ). There exists 𝑐𝑐′ ∈ ℕ such that 𝑚𝑚𝑚𝑚′ + ℎ =  ℎ′. Then we have  

𝑏𝑏ℎ′ = 𝑏𝑏𝑚𝑚𝑚𝑚′+ℎ = 𝑏𝑏𝑚𝑚𝑚𝑚′𝑏𝑏ℎ ≡ 𝑏𝑏ℎ (mod 𝑝𝑝𝑘𝑘−𝑠𝑠). 
From  gcd(𝑏𝑏𝑠𝑠,𝑟𝑟 , 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑠𝑠 and 𝑏̅𝑏𝑠𝑠,𝑟𝑟 = 𝑏̅𝑏𝑥𝑥,𝑦𝑦, we deduce that  𝑏𝑏𝑠𝑠,𝑟𝑟𝑏𝑏ℎ′ ≡ 𝑏𝑏𝑥𝑥,𝑦𝑦𝑏𝑏ℎ(mod 𝑝𝑝𝑘𝑘). This implies that 𝑔𝑔 is 
well-defined. 
 Assume that 𝑔𝑔(𝑎̅𝑎𝑠𝑠,𝑟𝑟𝑎̅𝑎ℎ) = 𝑔𝑔 (𝑎̅𝑎𝑥𝑥,𝑦𝑦𝑎̅𝑎ℎ′) , where ℎ, ℎ′ ∈ ℕ, 𝑠𝑠, 𝑥𝑥 ∈ { 0, 1, 2, … , 𝑘𝑘 − 1 } , 𝑟𝑟 ∈ {1,2,3, … ,𝑛𝑛𝑠𝑠} 
and 𝑦𝑦 ∈ {1,2,3, … ,𝑛𝑛𝑥𝑥}.  Therefore, we have 𝑏̅𝑏𝑠𝑠,𝑟𝑟𝑏̅𝑏ℎ = 𝑏̅𝑏𝑥𝑥,𝑦𝑦𝑏̅𝑏ℎ′.  Since 𝑏̅𝑏𝑠𝑠,𝑟𝑟𝑏̅𝑏ℎ ∈ 𝑉𝑉(𝑃𝑃′𝑠𝑠,𝑟𝑟) and 𝑏̅𝑏𝑥𝑥,𝑦𝑦𝑏̅𝑏ℎ′ ∈ 𝑉𝑉(𝑃𝑃′𝑥𝑥,𝑦𝑦), 
we have 𝑃𝑃′𝑠𝑠,𝑟𝑟 = 𝑃𝑃′𝑥𝑥,𝑦𝑦, which implies that 𝑠𝑠 = 𝑥𝑥 and 𝑟𝑟 = 𝑦𝑦. Thus, 𝑏̅𝑏𝑠𝑠,𝑟𝑟 =  𝑏̅𝑏𝑥𝑥,𝑦𝑦 and 𝑎̅𝑎𝑠𝑠,𝑟𝑟 = 𝑎̅𝑎𝑥𝑥,𝑦𝑦. Since 𝑏𝑏𝑠𝑠,𝑟𝑟𝑏𝑏ℎ ≡
𝑏𝑏𝑠𝑠,𝑟𝑟𝑏𝑏ℎ′(mod 𝑝𝑝𝑘𝑘) and 𝑔𝑔𝑔𝑔𝑔𝑔(𝑏𝑏𝑠𝑠,𝑟𝑟 , 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑠𝑠, we have 𝑏𝑏ℎ ≡ 𝑏𝑏ℎ′(mod 𝑝𝑝𝑘𝑘−𝑠𝑠). We assume that ℎ < ℎ′ then we have 
1 ≡ 𝑏𝑏ℎ′−ℎ(mod 𝑝𝑝𝑘𝑘−𝑠𝑠). This implies that 𝑚𝑚|(ℎ′ − ℎ), where 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑠𝑠𝑎𝑎 = 𝑚𝑚 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑘𝑘−𝑠𝑠𝑏𝑏. Then there exists 𝑐𝑐 ∈
ℕ such that  𝑚𝑚𝑚𝑚 + ℎ = ℎ′. We then have 𝑎𝑎ℎ′ = 𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎ℎ ≡ 𝑎𝑎ℎ(mod 𝑝𝑝𝑘𝑘−𝑠𝑠). From  gcd(𝑎𝑎𝑠𝑠,𝑟𝑟 , 𝑝𝑝𝑘𝑘) = 𝑝𝑝𝑠𝑠 and 𝑎̅𝑎𝑠𝑠,𝑟𝑟 =
𝑎̅𝑎𝑥𝑥,𝑦𝑦, we obtain that 𝑎𝑎𝑠𝑠,𝑟𝑟𝑎𝑎ℎ′ ≡ 𝑎𝑎𝑥𝑥,𝑦𝑦𝑎𝑎ℎ(mod 𝑝𝑝𝑘𝑘). It is easy to show that 𝑔𝑔 is surjective. From the definition of 𝑔𝑔 

and it’s injectivity, we conclude that 𝑔𝑔 is an isomorphism. 
  Example 10. Consider 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ16, 3̅) and 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ16, 11̅̅̅̅ ).  From 𝑜𝑜𝑜𝑜𝑜𝑜243 = 4 = 𝑜𝑜𝑜𝑜𝑜𝑜2411, 𝑜𝑜𝑜𝑜𝑜𝑜24−13 = 2 =
𝑜𝑜𝑜𝑜𝑜𝑜2311, 𝑜𝑜𝑜𝑜𝑜𝑜24−23 = 2 = 𝑜𝑜𝑜𝑜𝑜𝑜2211, 𝑜𝑜𝑜𝑜𝑜𝑜24−33 = 1 = 𝑜𝑜𝑜𝑜𝑜𝑜211 and Theorem 9, we then have 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ16, 3̅) is 
isomorphic to 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ16, 11̅̅̅̅ ). 
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Figure 4 𝐶𝐶𝐶𝐶𝐶𝐶(ℤ16, 11̅̅̅̅ ) 
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