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Abstract  
Let  be the semigroup of all transformations on a set . For an arbitrary equivalence relation  on , we consider a 

subset of  defined by 
. 

It is obvious that  is a subsemigroup of . In this paper, we characterize the left regular, the right regular and the 
completely regular for elements of . Moreover, we give a necessary and sufficient conditions for the semigroup  
when it is left regular, right regular and completely regular, respectively. 
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Introduction 
 

An element  of a semigroup  is called left regular if  for some , right regular if  
for some  and completely regular if  and  for some . In fact, every completely 
regular element is left regular and right regular. Moreover, Petrich and Reilly (1999) proved that an element 
 of a semigroup  is completely regular if and only if  is both a left and a right regular element of . If all 

its elements of  are left (right, completely) regular, we call  a left (right, completely) regular semigroup. 
The full transformation semigroup on a non-empty set  is denoted by , that is,  is the 

semigroup of all mappings  under the composition. Particularly, characterization of regularity on 
subsemigroups of  have been investigated, see Choomanee, Honyam and Sanwong (2013) ; Laysirikul 
(2016); Laysirikul and Namnak (2013); Namnak and Laysirikul (2013); and Sirasuntorn and Kemprasit 
(2010). In Pei (2005), the author studied a subsemigroup of  determined by an arbitrary equivalence 
relation , namely 

 

 
 

He investigated regularity and Green's relations for . After, Pei and Deng (2009)  described the 
equivalence relation  on  for which Green’s relations  and  are coincided in the semigroup . In 
2013, Namnak and Laysilikul ( 2013)  investigated a necessary and sufficient conditions when elements of 

 to be left regular, right regular and completely regular.  Recently, Mendes-Gonçalves and Sullivan 
(2010) introduced a subsemigroup of  defined by 
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and call it the semigroup of transformations restricted by an equivalence .  Then  is a 
subsemigroup of .  If  where  is the identity relation on , then .  The 
authors characterized Green's relations on the largest regular subsemigroup of . They also showed that 
if  and , then  is not isomorphic to  for any set . 
 The aim of this paper is to characterize left regular, right regular and completely regular elements of 

, respectively.  We also investigate a condition for which of the semigroup to be left regular, right 
regular and completely regular. 
 In what follows, let  be an equivalence relation on a nonempty set  and the quotient set is denoted by 

.  
 

Main Results 
 

We first introduce the following terminology.  For , the symbol  will denote the 
decomposition of  induced by the map , namely 

 
Hence  where . 
 The following lemma is needed for characterization of left regular.   
 Lemma 1.  Let . For each , there exists  such that . 
 Proof.   Let  and .  Choose .  If , then  and hence 

. Therefore . 
 Now, we investigate the condition under which an element in  is left regular. 
 Theorem 2.  Let . Then  is left regular if and only if for every , there exists  
such that . 
 Proof.  Assume that  is left regular. Then  for some . Let  and . 
Then  

 
and hence . Therefore for any , there is  such that . 
 Conversely, for each , we choose and fix an element  such that .  Let . 
Since  is a partition of , there exists  such that . We then have .  Define 

 by 
 for all . 

Let  be such that . Then there exists  such that . By Lemma 1, there is 
 such that .  Thus  and so .  This implies that .  Hence 

. If , then  which gives . We conclude that  is left regular. 
 An element  of a semigroup  is called idempotent if . Clearly, if  is idempotent, then  is both a 
left and a right regular element. For , we have that every constant mapping is an idempotent element. 
If , then every element of  is constant. Hence every element of  is idempotent.  
 Next, using the fact above proves a necessary and sufficient conditions for the semigroup  which is 
left regular. 
Theorem 3.  If , then  is a left regular semigroup. 
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 Proof.  Suppose that . If , then  contains only one element. Clearly,  is a 
left regular semigroup.  Assume that .  Then . If , then every element of 

 is idempotent and hence  is a left regular semigroup. If , then we have 

 
where . It is easy to see that  is a left regular semigroup by Theorem 2. 
Theorem 4.  Let . Then  is a left regular semigroup if and only if . 
 Proof.  Suppose that .  Then there exist distinct elements . Let  and . 
Since , there is an element . We distinguish two cases. 
 Case 1.   Either  or .  Without loss of generality, we may assume that .  Define 

 by 

 
Then . Let . Then  and . Since , . Therefore 

 for all  and thus  does not satisfy Theorem 2. Hence  is not a left regular element of . 
 Case 2.   and . Then there is  such that . Thus . Define 

 by 

 
Obviously,  and the set . Then  and so . Hence 
by Theorem 2 we obtain that  is not a left regular element of . 
 From the two cases, we conclude that  is not a left regular semigroup. 
 Conversely, if , then every element of  is idempotent and hence  is a left regular 
semigroup. 
 Next, we give a characterization of the right regular elements in . 
 Theorem 5.  Let . Then  is right regular if and only if  is an injection. 
 Proof. Assume that  is right regular. Then  for some . Let  be such that 

. Then  and  for some .  Thus 
. This means that  is an injection. 

 Conversely, suppose that  is an injection. Let  be such that . We choose and fix 
an element .  For each , there exists a unique  such that  by 
assumption. We observe that . This implies that . By assumption, we 
get that . Since  and   is injective, . Define  by 

  for all . 

Then we define the map  by 

 
for all  where  is the constant mapping from  into . Since  is a partition of ,  is well-
defined. Obviously, . Finally, we will show that . Let , so . Then there 
exists  such that .  By the definition of ,  where 

.  By the uniqueness of , we obtain that .  Thus 
. We conclude that  is right regular, as asserted. 

 The proof of the next result is similar to Theorem 3. 
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 Theorem 6.  If , then  is a right regular semigroup. 
 Theorem 7.  Let . Then  is a right regular semigroup if and only if . 
 Proof.  Assume that .  Then there are  with .  Let  and .  From 

, we let . 
Case 1.  Either  or . Without loss of generality, we let .  Define  by 

 
Then . Since  and ,  is not injective. 
 Case 2.   and . Define  by 

 
Obviously . Since  and , . Note that . Thus  is not injective. 
 Form the discussion above, they follow from Theorem 5 that  is not a right regular semigroup. 
 The converse of theorem is clear. 
 Finally, we give a characterization of the completely regular elements in . 
 Theorem 8.  Let . Then  is completely regular if and only if  for all . 
 Proof.  Suppose that  is a completely regular element. Then  is a left and a right regular element. Let 

. By Theorem 2, there exists  such that . Thus . If , then 
. It follows from Theorem 5 that . Hence , as required.   

 Conversely, suppose that for each , . Let  be such that . Then 
 for some . By assumption, we obtain that , so that  is an injection. By 

Theorem 5, we have  is right regular. From assumption and Theorem 2, we get that  is left regular. Hence 
 is completely regular. 

 Theorems 3, 4, 6 and 7 can be summarized as follows: 
 Corollary 9.   is a completely regular semigroup if and only if  or . 
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