The Relationship between the Nine-Point Circle, the Circumscribed Circle and the Inscribed Circle of Archimedes' Triangle

Yuporn Rimcholakarn

Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand 65000
Corresponding author. E-mail address: rimcholakarn@yahoo.co.th

Abstract

The purpose of this research was to study the relationship between the Nine-Point Circle and the Circumscribed circle of Archimedes' triangle, and the relationship between the Nine-Point circle and the Inscribed circle of Archimedes' triangle. The results were that the radius of the Nine-Point Circle of Archimedes' triangle is half the radius of the Circumscribed circle of Archimedes' triangle, and the Nine-Point circle and the Inscribed circle of Archimedes' triangle touch internally.

Keywords: Archimedes' triangle, Nine-Point circle, Circumscribed circle of triangle, Inscribed circle of triangle

Introduction

The Swiss mathematician, Leonhard Euler (1707-1783), discovered the Nine-Point Circle of a triangle, and that its circumference passes through nine points, with the first three points being the midpoint of the triangle's sides, and the three points originating at the perpendicular line from the vertex to meet the opposite sides of the triangle, and the other three points being the midpoint of the distance between the orthocenter and the vertex of the triangular angles. (Davis, 2002). Karl Feuerbach (1800-1834), a German mathematician, also described this, in detail, Thus, this is also called the Feuerbach Circle or Euler Circle.

Figure 1 the Nine-Point Circle

Figure $1 ; \mathrm{H}$ is the orthocenter of triangle ABC , a circle with its circumference passing through nine points which are the midpoints of triangle's sides $\left(\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}\right)$, with the points originating at the perpendicular line from the vertex to the opposite sides $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}\right)$ and the midpoint of the orthocenter and the vertex of the triangles $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)$ call the Nine-Point Circle of the ABC triangle.

The Greek mathematician, Archimedes (287-212 B.C.) , discovered that the parabolic segment of the parabolic curve, and the cord, link on two points on their parabolic curve, then, from lines touching the parabolic curve at the end of the cords along to the outside parabolic segment, to form an Archimedes'

Triangle. Thus, the base of triangle is the parabolic segment cord and the other two sides are lines touching the parabolic curve at the end of the cords. (Erbas, 2000; Woltermann, 2014)

Figure 2.1 Archimedes' Triangle

Figure 2.2 the Nine-Point Circle, the Circumscribed Circle and the Inscribed Circle of Archimedes' Triangle

Figure 2.1; An Archimedes' Triangle ABC from the line meeting the parabolic curve at point A and B, side AC and BC from the lines attaching the parabolic curve at A and B and meeting at point C .

All of the Nine-Point Circle, the Circumscribed Circle and the Inscribed Circle have structural relationships with Archimedes' Triangle (Figure 2.2) thus, the aims of this research were to describe relationship of the Nine-Point Circle, the Circumscribed Circle and the Inscribed Circle of Archimedes’ Triangle by using the analytical geometry method to expand the mathematic knowledge for developing other subjects.

Methods and Materials

This research used the following procedures; at first review basic knowledge study about definition, property, co-ordinates, composition and structure of the Nine-Point Circle, the Circumscribed Circle and the Inscribed Circle of Archimedes' Triangle by using the analytical geometry method, and then find radius of the Nine-Point Circle and the Circumscribed Circle for describe relationship of them by using Euclidian geometry and rectangular analytic geometry, solution of quadratic equation, calculus and ratio compare method, finally find distance from center of the Nine-Point Circle to the Inscribed Circle for compare this with the difference of radius of the Nine-Point Circle and radius of the Inscribed Circle to describe relationship of them by using property of circle and Euclidian geometry with trigonometry proof.

Results

1. Basic Knowledge

1.1 Archimedes' Triangle

Definition 1 Let parabolic segment is area that's enclosed with parabolic curve and cord link on two points on their parabolic curve, Archimedes' Triangle is the triangle its base is parabolic segment cord and other two sides are lines touch parabolic curve at end of the cords.

1.2 Archimedes' Triangle in Rectangular Co-ordinate System

Determine Archimedes' Triangle in Rectangular Co-ordinate system is a result of line $y=m x+c$, where m and c are real number and not equal to 0 simultaneously meet parabolic curve $y=a x^{2}$, where a is real number and not equal to 0 at point B and C . Cord BC is a base of this triangle, side AB and AC originated from two tangent line of parabolic curve at B and C , point of intersection is A .

Figure 3 Archimedes' Triangle in Rectangular Co-ordinate System

Manoosilp (2014) and Rimcholakarn (2017) studied to co-ordinate vertex of Archimedes’ Triangle ABC by solving equation for intersection point of line BC and parabolic curve and intersection point of line AB and AC. then, they found;

$$
\begin{aligned}
& \mathrm{A}\left(\frac{m}{2 a},-c\right) \\
& \mathrm{B}\left(\frac{m-\sqrt{m^{2}+4 a c}}{2 a}, \frac{m^{2}-m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right) \\
& \mathrm{C}\left(\frac{m+\sqrt{m^{2}+4 a c}}{2 a}, \frac{m^{2}+m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right)
\end{aligned}
$$

1.3 Orthocenter of Archimedes' Triangle

Definition 2 The Orthocenter of a triangle is the intersection point originating from a perpendicular line from the vertex meet the opposite triangle sides. (Dunham, 1998)

Archimedes' Triangle ABC is a result of line $y=m x+c$, meet parabolic curve $y=a x^{2}$, at point B and C. Let L_{1}, L_{2} and L_{3} is the point originated the perpendicular line from the vertex meet the side $A B, B C$ and $A C$ respectively. H (Orthocenter) is intersection point of line L_{1}, L_{2} and L_{3}.

Figure 4 Orthocenter of Archimedes' Triangle

Finding Co-ordinate of Orthocenter of Archimedes' Triangle

Figure 4; Line CL_{1} perpendicular to AB , from the derivative of $y=a x^{2}$ and substitute
with $\frac{m-\sqrt{m^{2}+4 a c}}{2 a}$ thus, the slop of line $\mathrm{AB}=m-\sqrt{m^{2}+4 a c}$, therefore, slop of line $\mathrm{CL}_{\mathbf{1}}=-\left[\frac{1}{m-\sqrt{m^{2}+4 a c}}\right]$

Co-ordinate of point C at $\left(\frac{m+\sqrt{m^{2}+4 a c}}{2 a}, \frac{m^{2}+m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right)$ thus, linear equation CL_{1} is

$$
\begin{align*}
& y-\left[\frac{m^{2}+m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right]=-\left[\frac{1}{m-\sqrt{m^{2}+4 a c}}\right]\left[x-\left(\frac{m+\sqrt{m^{2}+4 a c}}{2 a}\right)\right] \\
& y=\left[\frac{m^{2}+m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right]-\left[\frac{x}{m-\sqrt{m^{2}+4 a c}}\right]+\left[\frac{m+\sqrt{m^{2}+4 a c}}{(2 a)\left(m-\sqrt{m^{2}+4 a c}\right)}\right] \tag{1}
\end{align*}
$$

From line BL_{3} perpendicular to AC the slop of line $\mathrm{AC}=m+\sqrt{m^{2}+4 a c}$, therefore, slop of line $\mathrm{BL}_{3}=-\left[\frac{1}{m+\sqrt{m^{2}+4 a c}}\right]$

Co-ordinate of point B at $\left(\frac{m-\sqrt{m^{2}+4 a c}}{2 a}, \frac{m^{2}-m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right)$, thus, linear equation CL_{1} is

$$
\begin{align*}
& y-\left[\frac{m^{2}-m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right]=-\left[\frac{1}{m+\sqrt{m^{2}+4 a c}}\right]\left[x-\left(\frac{m-\sqrt{m^{2}+4 a c}}{2 a}\right)\right] \\
& y=\left[\frac{m^{2}-m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right]-\left[\frac{x}{m+\sqrt{m^{2}+4 a c}}\right]+\left[\frac{m-\sqrt{m^{2}+4 a c}}{(2 a)\left(m+\sqrt{m^{2}+4 a c}\right)}\right] \tag{2}
\end{align*}
$$

Finding co-ordinate of point H from intersection line BL_{3} and CL_{1}
consider (1) and (2) result from (2)-(1):

$$
\begin{aligned}
\left(\frac{-2 \sqrt{m^{2}+4 a c}}{-4 a}\right) x & =\frac{-2 m \sqrt{m^{2}+4 a c}}{2 a}+\frac{(-4 m) \sqrt{m^{2}+4 a c}}{(2 a)\left(m^{2}-m^{2}-4 a c\right)} \\
\left(\frac{\sqrt{m^{2}+4 a c}}{2 a c}\right) x & =\frac{-m \sqrt{m^{2}+4 a c}}{a}+\frac{m \sqrt{m^{2}+4 a c}}{2 a^{2} c} \\
\left(\frac{\sqrt{m^{2}+4 a c}}{2 a c}\right) x & =\frac{-2 a c\left(m \sqrt{m^{2}+4 a c}\right)+m \sqrt{m^{2}+4 a c}}{2 a^{2} c}
\end{aligned}
$$

$$
x=\frac{m-2 a c m}{a}
$$

substitute x in (2)

$$
\begin{aligned}
& \qquad \begin{aligned}
& y=\left[\frac{m^{2}+m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right]-\left[\frac{\frac{m-2 a c m}{a}}{m-\sqrt{m^{2}+4 a c}}\right]+\left[\frac{m+\sqrt{m+4 a c}}{(2 a)\left(m-\sqrt{m^{2}+4 a c}\right)}\right] \\
&=\frac{\left(m^{2}+m \sqrt{m^{2}+4 a c}+2 a c\right)\left(m-\sqrt{m^{2}+4 a c}\right)-2(m-2 a c m)+\left(m+\sqrt{m^{2}+4 a c}\right)}{(2 a)\left(m-\sqrt{m^{2}+4 a c}\right)} \\
&=\frac{(2 a c-1)\left(m-\sqrt{m^{2}+4 a c}\right)}{(2 a)\left(m-\sqrt{m^{2}+4 a c}\right)} \\
& y=\frac{2 a c-1}{2 a} \\
& \text { then, the co-ordinate of orthocenter of Archimedes' Triangle at } \mathrm{H}\left(\frac{m-2 a c m}{a}, \frac{2 a c-1}{2 a}\right)
\end{aligned} \\
&
\end{aligned}
$$

2. The Nine-Point Circle and the Circumscribed Circle of Archimedes' Triangle

Definition 3 the Nine-Point Circle of Archimedes' triangle is the circle that its circumference pass through the three midpoints of triangle sides, then three points originated perpendicular line from vertex meet opposite triangle sides and three midpoint of distance between orthocenter and vertex of Archimedes' Triangle.

2.1 Radius of the Nine-Point Circle of Archimedes' Triangle

Determine the circumference of the Nine-Point circle of Archimedes' Triangle ABC pass through point $L_{1}, P_{2}, L_{2}, M_{2}, P_{3}, M_{3}, L_{3}, P_{1}$ and M_{1} respectively, where M_{1}, M_{2} and M_{3} is the midpoint of side $A B$, $B C$ and $A C$, point L_{1}, L_{2} and L_{3} originated the perpendicular line from vertex meet side $A B, B C$ and $A C$, point H is orthocenter and point $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} is the midpoint of the line AH, BH and CH respectively.

Figure 5 Radius and Area of the Nine-Point Circle of Archimedes' Triangle

Figure 5.2; Point M_{2}, L_{2} and P_{1} are on the circumference and $\angle M_{2} L_{2} P_{1}$ is a right angle, thus, $\angle \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{P}_{1}$ is an angle in semicircle and line $\mathrm{M}_{2} \mathrm{P}_{1}$ is the diameter of the Nine-Point Circle.

Finding Co-ordinate of Point \mathbf{M}_{2} (midpoint of side BC)

M_{2} is midpoint of side $B C$, thus, co-ordinate of M_{2} is

$$
\begin{aligned}
x & =\frac{\frac{m-\sqrt{m^{2}+4 a c}}{2 a}+\frac{m+\sqrt{m^{2}+4 a c}}{2 a}}{2} \\
& =\frac{m}{2 a} \\
y & =\frac{\frac{m^{2}-m \sqrt{m^{2}+4 a c}+2 a c}{2 a}+\frac{m^{2}+m \sqrt{m^{2}+4 a c}+2 a c}{2 a}}{2} \\
& =\frac{m^{2}+2 a c}{2 a}
\end{aligned}
$$

then, co-ordinate of the midpoint of side BC at $\mathrm{M}_{2}\left(\frac{m}{2 a}, \frac{m^{2}+2 a c}{2 a}\right)$

Finding Co-ordinate of Point \mathbf{P}_{1} (midpoint of line $\mathbf{A H}$)

P_{1} is the midpoint of the distance from $\mathrm{A}\left(\frac{m}{2 a},-c\right)$ to $\mathrm{H}\left(\frac{m-2 a c m}{a}, \frac{2 a c-1}{2 a}\right)$, thus, the co-ordinate of point P_{1} is

then, co-ordinate of midpoint of line AH at $\mathrm{P}_{1}\left(\frac{3 m-4 a c m}{4 a},-\frac{1}{4 a}\right)$
Finding the Co-ordinate of Center of the Nine-Point Circle of Archimedes' Triangle
Let point N is the center of the Nine-Point Circle of Archimedes' Triangle (midpoint of line $\mathrm{M}_{2} \mathrm{P}_{1}$), thus, co-ordinate of point N is

$$
\begin{aligned}
x & =\frac{\frac{m}{2 a}+\frac{3 m-4 a c}{4 a}}{2}, & y & =\frac{\frac{m^{2}+2 a c}{2 a}+\left(-\frac{1}{4 a}\right)}{2} \\
& =\frac{5 m-4 a c}{8 a}, & & =\frac{2 m^{2}+4 a c-1}{8 a}
\end{aligned}
$$

then, the co-ordinate of center of the Nine-Point Circle at $\mathrm{P}_{1}\left(\frac{5 m-4 a c}{8 a}, \frac{2 m^{2}+4 a c-1}{8 a}\right)$
Finding the length of Radius of the Nine-Point Circle of Archimedes' Triangle
Let $r_{n}=\mathrm{P}_{1} \mathrm{~N}$ is the radius of the Nine-Point Circle of Archimedes' Triangle

$$
\begin{aligned}
r_{n}=\left|\mathrm{P}_{1} \mathrm{~N}\right| & =\sqrt{\left[\left(\frac{5 m-4 a c m}{8 a}\right)-\left(\frac{3 m-4 a c m}{4 a}\right)\right]^{2}+\left[\left(\frac{2 m^{2}+4 a c-1}{8 a}\right)-\left(\frac{-1}{4 a}\right)\right]^{2}} \\
& =\sqrt{\left[\frac{5 m-4 a c m-6 m+8 a c m}{8 a}\right]^{2}+\left[\frac{2 m^{2}+4 a c-1+2}{8 a}\right]^{2}} \\
& =\sqrt{\frac{16 a^{2} c^{2} m^{2}-8 a c m^{2}+m^{2}}{64 a^{2}}+\frac{4 m^{4}+4 m^{2}+8 a c+16 a^{2} c^{2}+16 a c m^{2}+1}{64 a^{2}}} \\
& =\sqrt{\frac{4 m^{4}+5 m^{2}+8 a c m^{2}+8 a c+16 a^{2} c^{2}+16 a^{2} c^{2} m^{2}+1}{64 a^{2}}}
\end{aligned}
$$

then, the length of Radius of the Nine-Point Circle of Archimedes' Triangle is equal to

$$
\sqrt{\frac{4 m^{4}+5 m^{2}+8 a c m^{2}+8 a c+16 a^{2} c^{2}+16 a^{2} c^{2} m^{2}+1}{64 a^{2}}} \text { unit }
$$

2.2 Radius of the Circumscribed Circle of Archimedes' Triangle

Definition 4 the Circumscribed circle of the triangle is the circle passing through the three vertices of the triangle. (Yiu, 2001)

Definition 5 C the ircumcenter of a triangle is the intersection point of the perpendicular bisectors of the three sides of the triangle. (Dunham, 1998)

Determine Archimedes' Triangle ABC is a result of line $y=m x+c$, meet the parabolic curve $y=a x^{2}$, at point B and C. Let $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3} is the midpoint of side AB, BC and AC respectively. O is the intersection point of the perpendicular bisectors of the three sides of Archimedes' Triangle ABC.

(6.1)

(6.2)

Figure 6 Radius and Area of the Circumscribed Circle of Archimedes' Triangle

Finding Co-ordinate of Circumcenter of Archimedes' Triangle

Co-ordinate of midpoint of side BC is $\mathrm{M}_{2}\left(\frac{m}{2 a}, \frac{m^{2}+2 a c}{2 a}\right)$ and slop of $\mathrm{BC}=m$, from the $\mathrm{M}_{2} \mathrm{O}$ perpendicular to BC , therefore, slop of line $\mathrm{M}_{2} \mathrm{O}=-\left[\frac{1}{m}\right]$
thus, linear equation of $\mathrm{M}_{2} \mathrm{O}$ is

$$
\begin{align*}
y-\left[\frac{m^{2}+2 a c}{2 a}\right] & =-\left[\frac{1}{m}\right]\left[x-\frac{m}{2 a}\right] \\
y & =\left[\frac{m^{2}+2 a c}{2 a}\right]-\left[\frac{x}{m}\right]+\left[\frac{1}{2 a}\right] \tag{3}
\end{align*}
$$

Point A $\left(\frac{m}{2 a},-c\right)$ and $\mathrm{C}\left(\frac{m+\sqrt{m^{2}+4 a c}}{2 a}, \frac{m^{2}+m \sqrt{m^{2}+4 a c}+2 a c}{2 a}\right)$ are the end point of side $A C$ and M_{3} is the midpoint of side $A C$, thus, the co-ordinate of point M_{3} is

$$
\begin{array}{rlrl}
x & =\frac{\frac{m}{2 a}+\frac{m+\sqrt{m^{2}+4 a c}}{2 a}}{2}, & y=\frac{(-c)+\frac{m^{2}+m \sqrt{m^{2}+4 a c}+2 a c}{2 a}}{2} \\
& =\frac{2 m+\sqrt{m+4 a c}}{4 a}, & & =\frac{m^{2}+m \sqrt{m^{2}+4 a c}}{4 a}
\end{array}
$$

then, co-ordinate of midpoint of side AC at $\mathrm{M}_{3}\left(\frac{2 m+\sqrt{m+4 a c}}{4 a}, \frac{m^{2}+m \sqrt{m^{2}+4 a c}}{4 a}\right)$
the slop of side $\mathrm{AC}=\frac{\frac{m^{2}+m \sqrt{m^{2}+4 a c}+2 a c+2 a c}{2 a}}{\frac{m+m \sqrt{m^{2}+4 a c}-m}{2 a}}$

$$
=m+\sqrt{m^{2}+4 a c}
$$

the line $\mathrm{M}_{3} \mathrm{O}$ perpendicular to AC , therefore, slop of line $\mathrm{M}_{3} \mathrm{O}=-\left[\frac{1}{m+\sqrt{m^{2}+4 a c}}\right]$
The linear equation of line $\mathrm{M}_{3} \mathrm{O}$ is

$$
\begin{align*}
& y-\left[\frac{m^{2}+m \sqrt{m^{2}+4 a c}}{4 a}\right]=-\left[\frac{1}{m+\sqrt{m^{2}+4 a c}}\right]\left[x-\left(\frac{2 m+\sqrt{m^{2}+4 a c}}{4 a}\right)\right] \\
& y=\left[\frac{m^{2}+m \sqrt{m^{2}+4 a c}}{4 a}\right]-\left[\frac{x}{m+\sqrt{m^{2}+4 a c}}\right]+\left[\frac{2 m+\sqrt{m^{2}+4 a c}}{\left(m+\sqrt{m^{2}+4 a c}\right)(4 a)}\right] \tag{4}
\end{align*}
$$

Point O is the Circumcenter of a triangle and also the intersection point of line $\mathrm{M}_{2} \mathrm{O}$ and $\mathrm{M}_{3} \mathrm{O}$, thus, from (3) and (4) the co-ordinate of point O is

$$
\begin{aligned}
{\left[\frac{m^{2}+2 a c}{2 a}\right]-\left[\frac{x}{m}\right]+\left[\frac{1}{2 a}\right] } & =\left[\frac{m^{2}+m \sqrt{m^{2}+4 a c}}{4 a}\right]-\left[\frac{x}{m+\sqrt{m^{2}+4 a c}}\right]+\left[\frac{2 m+\sqrt{m^{2}+4 a c}}{\left(m+\sqrt{m^{2}+4 a c}\right)(4 a)}\right] \\
{\left[\frac{m-m-\sqrt{m^{2}+4 a c}}{(m+\sqrt{m+4 a c})(m)}\right] x } & =\frac{-(4 a c+1) \sqrt{m^{2}+4 a c}}{\left(m+\sqrt{m^{2}+4 a c}\right)(4 a)} \\
x & =\frac{-\left[(4 a c+1) \sqrt{m^{2}+4 a c}\right]\left[m+\sqrt{m^{2}+4 a c}\right][m]}{\left(m+\sqrt{m^{2}+4 a c}\right)(4 a)\left(-\sqrt{m^{2}+4 a c}\right)} \\
& =\frac{4 a c m+m}{4 a}
\end{aligned}
$$

substitute x in (3)

$$
\begin{aligned}
y & =\left[\frac{m^{2}+2 a c}{2 a}\right]-\left[\frac{\frac{4 a c m+m}{4 a}}{m}\right]+\left[\frac{1}{2 a}\right] \\
& =\frac{2 m^{3}+4 a c m-4 a c m-m+2 m}{4 a m} \\
& =\frac{2 m^{2}+1}{4 a}
\end{aligned}
$$

then, the co-ordinate of circumcenter of Archimedes'Ttriangle at $\mathrm{M}_{3}\left(\frac{4 a c m+m}{4 a}, \frac{2 m^{2}+1}{4 a}\right)$
Finding length of Radius of the Circumscribed Circle of Archimedes' Triangle
Let $R=$ AO is radius of the Circumscribed circle of Archimedes' triangle

$$
R=|\mathrm{AO}|=\sqrt{\left[\left(\frac{4 a c m+m}{4 a}\right)-\left(\frac{m}{2 a}\right)\right]^{2}+\left[\left(\frac{2 m^{2}+1}{4 a}\right)-(-c)\right]^{2}}
$$

$$
=\sqrt{\left[\frac{4 a c m-m}{4 a}\right]^{2}+\left[\frac{2 m^{2}+4 a c+1}{4 a}\right]^{2}}
$$

$$
=\sqrt{\left(\frac{16 a^{2} c^{2} m^{2}-8 a c m^{2}+m^{2}}{16 a^{2}}\right)+\left(\frac{4 m^{4}+4 m^{2}+8 a c+16 a^{2} c^{2}+16 a c m^{2}+1}{16 a^{2}}\right)}
$$

$$
=\sqrt{\frac{4 m^{4}+5 m^{2}+8 a c m^{2}+8 a c+16 a^{2} c^{2}+16 a^{2} c^{2} m^{2}+1}{16 a^{2}}}
$$

then, length of Radius of the Circumscribed Circle of Archimedes' Triangle is equal to

$$
\sqrt{\frac{4 m^{4}+5 m^{2}+8 a c m^{2}+8 a c+16 a^{2} c^{2}+16 a^{2} c^{2} m^{2}+1}{16 a^{2}}} \text { unit }
$$

3. The Relationship between the Radius of the Nine-Point Circle and the Circumscribed Circle of Archimedes' Triangle

Figure 7 Relationship between the Nine-Point circle and the Circumscribed Circle of Archimedes' triangle
From figure 7; let
r_{n} is radius of the Nine-Point circle of Archimedes' triangle
R is radius of the Circumscribed circle of Archimedes' triangle
the ratio of the radius of the Nine-Point circle of Archimedes' triangle and radius of the Circumscribed circle of Archimedes' triangle is

$$
\begin{aligned}
\frac{r_{n}}{R} & =\frac{(\pi) \sqrt{\frac{4 m^{4}+5 m^{2}+8 a c m^{2}+8 a c+16 a^{2} c^{2}+16 a^{2} c^{2} m^{2}+1}{64 a^{2}}}}{(\pi) \sqrt{\frac{4 m^{4}+5 m^{2}+8 a c m^{2}+8 a c+16 a^{2} c^{2}+16 a^{2} c^{2} m^{2}+1}{16 a^{2}}}} \\
& =\frac{1}{2}
\end{aligned}
$$

then, the radius of the Nine-Point Circle of Archimedes' Triangle is half of the radius of the Circumscribed Circle of Archimedes' triangle

Remark

Let r and R is the radius of the Nine-Point Circle and the radius of the Circumscribed Circle of Archimedes’ Triangle respectively. the radius of the Nine-Point Circle of Archimedes’ Triangle is half of the radius of the Circumscribed Circle of Archimedes' Triangle, so that, we can say $R=2 r$
4. The Nine-Point Circle and the Inscribed Circle of Archimedes' Triangle

Definition 6 the Inscribed Circle of triangle is the circle that its circumference touches three sides of triangle. The Incenter of a triangle is intersection point of the three angles bisectors of triangle.

4.1 Distance from Circumcenter to Incenter of Archimedes' Triangle

Determine point O and I is the circumcenter and incenter of Archimedes' Triangle ABC respectively, point Q_{1}, Q_{2} and Q_{3} is the point of tangency of the circumference of the Inscribed circle, line $\mathrm{IQ}_{1}, \mathrm{IQ}_{2}$ and IQ_{3} are the radius of the Inscribed Circle and line OI is the distance from the circumcenter to the incenter of the Archimedes’ Triangle.

Figure 8 Relationship between the Nine-Point circle and the Inscribed circle of Archimedes' triangle

Finding distance from Circumcenter to Incenter of Archimedes' Triangle

Consider Figure 8.2; let R is radius of the Circumscribed Circle of Archimedes’ Triangle r is radius of the Inscribed Circle of Archimedes' Triangle d is distance from point O to I

Draw a line from point A through I meet the circumference of the Circumscribed Circle at point L_{1}, us, line $A L_{1}$ is bisector of $\angle B A C$, so that L_{1} is midpoint of curve $B C$

Draw a line from point L_{1} through O meet the circumference of the Circumscribed Circle at point L_{2}, thus, line $\mathrm{L}_{1} \mathrm{~L}_{2}$ is diameter of the Circumscribed Circle
Q_{1} is point of tangency, thus, IQ_{1} is the perpendicular line to side AB at point Q_{1} and line $\mathrm{IQ}_{1}=r$ is radius of the Inscribed Circle

Triangle $\mathrm{AQ}_{1} \mathrm{I}$ and $\mathrm{BL}_{1} \mathrm{~L}_{2}$ are similar triangle because

$$
\begin{array}{ll}
\angle \mathrm{AQ}_{1} \mathrm{I}=\angle \mathrm{BL}_{1} \mathrm{~L}_{2} & \text { (both are right angle }) \\
\angle \mathrm{Q}_{1} \mathrm{AI}=\angle \mathrm{BL}_{2} \mathrm{~L}_{1} & \text { (both angle on curve } \left.\mathrm{BL}_{1} \text { are equal }\right) \\
\angle \mathrm{AIQ}_{1}=\angle \mathrm{BL}_{1} \mathrm{~L}_{2} \quad \text { (if two pairs of two triangles are equal, so is the third angle) }
\end{array}
$$

From similar triangle $\mathrm{AQ}_{1} \mathrm{I}$ and $\mathrm{BL}_{1} \mathrm{~L}_{2}$, the ratio

$$
\begin{align*}
\mathrm{IQ}_{1}: \mathrm{BL}_{1} & =\mathrm{AI}: \mathrm{L}_{1} \mathrm{~L}_{2} \\
\left(\mathrm{IQ}_{1}\right)\left(\mathrm{L}_{1} \mathrm{~L}_{2}\right) & =(\mathrm{AI})\left(\mathrm{BL}_{1}\right) \\
2 R r & =(\mathrm{AI})\left(\mathrm{BL}_{1}\right) \tag{5}
\end{align*}
$$

Draw a line BI, let $\alpha=\angle \mathrm{BAC}$ and $\beta=\angle \mathrm{ABC}$
Consider triangle $\mathrm{ABI}, \angle \mathrm{BIL}_{1}=\frac{\alpha}{2}+\frac{\beta}{2}$ and triangle $\mathrm{BL}_{1} \mathrm{I}, \angle \mathrm{IBL}_{1}=\frac{\alpha}{2}+\frac{\beta}{2}$,
thus, $\angle \mathrm{BIL}_{1}=\angle \mathrm{IBL}_{1}$, BIL_{1} is isosceles triangle and side $\mathrm{BL}_{1}=\mathrm{IL}_{1}$
substitute IL_{1} in (5) therefore, $2 R r=(\mathrm{AI})\left(\mathrm{IL}_{1}\right)$

Draw a line from point O through I meet the circumference of the Circumscribed Circle at point U_{1} and draw a line from point I through O meet the circumference of the Circumscribed Circle at point U_{2}, thus, line $U_{1} U_{2}$ is diameter of the Circumscribed Circle and $U_{1} U_{2}=2 R$

$$
\begin{align*}
& \text { From } \quad\left(\mathrm{U}_{1} \mathrm{I}\right)\left(\mathrm{U}_{2} \mathrm{I}\right)=(\mathrm{AI})\left(\mathrm{IL}_{1}\right)=2 R r \text {, thus } \\
& (R+d)(R-d)=2 R r \\
& R^{2}-d^{2}=2 R r \\
& d^{2}=R(R-2 r) \\
& \text { (OI) })^{2}=R^{2}-2 R r \tag{6}
\end{align*}
$$

then, the distance from the circumcenter to the incenter of Archimedes' Triangle is in the form $(\mathrm{OI})^{2}=R^{2}-2 R r$

4.2 Distance from Incenter to Orthocenter of Archimedes' Triangle

Determine point I and H is the incenter and orthocenter of the Archimedes' Triangle ABC respectively, line IH is the distance from the incenter to the the orthocenter of Archimedes' Triangle.

Figure 9 incenter and orthocenter of Archimedes' Triangle
Finding the distance from the Incenter to the Orthocenter of the the Archimedes' Triangle
Let $\quad R$ is radius of the Circumscribed Circle of Archimedes' Triangle r is radius of the Inscribed Circle of Archimedes' Triangle
α, β and θ is $\angle \mathrm{BAC}, \angle \mathrm{ABC}$ and $\angle \mathrm{ACB}$ respectively
From $\angle \mathrm{HAC}=90^{\circ}-\theta$ and $\angle \mathrm{IAC}=\frac{\alpha}{2^{\prime}}$
thus, $\angle \mathrm{HAI}=90^{\circ}-\theta-\frac{\alpha}{2}=\frac{\alpha}{2}+\frac{\beta}{2}+\frac{\theta}{2}-\frac{2 \theta}{2}-\frac{\alpha}{2}=\frac{\beta-\theta}{2}$
Line $\mathrm{AH}=2 R \cos \alpha$ and $\mathrm{AI}=4 R \sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\theta}{2}\right)$
Consider triangle HAI, from the Law of Cosine,

$$
\begin{aligned}
(\mathrm{IH})^{2}= & (\mathrm{AH})^{2}+(\mathrm{AI})^{2}-2(\mathrm{AH})(\mathrm{AI}) \cos \left(\frac{\beta-\theta}{2}\right) \\
= & 4 R^{2} \cos ^{2} \alpha+16 R^{2} \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)-(2)(2) R \cos \alpha(4) R \sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\beta-\theta}{2}\right) \\
= & 4 R^{2} \cos ^{2} \alpha+16 R^{2} \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right) \\
& -16 R^{2} \cos \alpha \sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\theta}{2}\right)\left[\cos \left(\frac{\beta}{2}\right) \cos \left(\frac{\theta}{2}\right)+\sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\theta}{2}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
= & 4 R^{2}\left[\cos ^{2} \alpha+4 \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)\right] \\
& -4 R^{2}\left[4 \cos \alpha \sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\theta}{2}\right)\left(\cos \left(\frac{\beta}{2}\right) \cos \left(\frac{\theta}{2}\right)+\sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\theta}{2}\right)\right)\right] \\
= & 4 R^{2}\left[\cos ^{2} \alpha+4 \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)\right] \\
& -4 R^{2}\left[\cos \alpha(2) \sin \left(\frac{\beta}{2}\right) \cos \left(\frac{\beta}{2}\right)(2) \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)-4 \cos \alpha \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)\right] \\
= & 4 R^{2}\left[\cos ^{2} \alpha+8 \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right) \frac{1}{2}(1-\cos \alpha)-\cos \alpha \sin \beta \sin \theta\right] \\
= & 4 R^{2}\left[\cos ^{2} \alpha+8 \sin ^{2}\left(\frac{\alpha}{2}\right) \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)-\cos \alpha \sin \beta \sin \phi\right] \\
= & 4 R^{2}\left[8 \sin ^{2}\left(\frac{\alpha}{2}\right) \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)+\cos \alpha(\cos \alpha-\sin \beta \sin \theta)\right] \\
= & 4 R^{2}\left[8 \sin ^{2}\left(\frac{\alpha}{2}\right) \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)+\cos \alpha\left(\cos \left(180^{\circ}-(\beta+\theta)\right)-\sin \beta \sin \theta\right)\right] \\
= & 4 R^{2}\left[8 \sin ^{2}\left(\frac{\alpha}{2}\right) \sin ^{2}\left(\frac{\beta}{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right)+\cos \alpha \sin \beta \sin \theta\right] \\
= & 2\left[4 R \sin \left(\frac{\alpha}{2}\right) \sin \left(\frac{\beta}{2}\right) \sin \left(\frac{\theta}{2}\right)\right]^{2}-4 R^{2} \cos \alpha \cos \beta \cos \theta \\
= & 2 r^{2}-4 R^{2} \cos \alpha \cos \beta \cos \theta \\
(\mathrm{IH})^{2}= & 2 r^{2}-4 R^{2} \cos \alpha \cos \beta \cos \theta \tag{7}
\end{align*}
$$

then, the distance from the incenter to the orthocenter of Archimedes' the Triangle is
in the form (IH$)^{2}=2 r^{2}-4 R^{2} \cos \alpha \cos \beta \cos \theta$

4.3 Distance from Circumcenter to Orthocenter of Archimedes' Triangle

Determine point O and H is the the circumcenter and the orthocenter of Archimedes' Triangle ABC respectively, AO is radius of the Circumscribed Circle, OH is the distance from the circumcenter to the orthocenter of the Archimedes' Triangle.

Figure 10 the circumcenter and orthocenter of Archimedes’ Triangle

Determine point O and H is the circumcenter and the orthocenter of the Archimedes' triangle ABC respectively, AO is the radius of the Circumscribed circle, OH is the distance from the circumcenter to the orthocenter of the Triangle.

Let $\quad R$ is radius of the Circumscribed circle of Archimedes' triangle
r is radius of the Inscribed circle of Archimedes' triangle
α, β and θ is $\angle \mathrm{BAC}, \angle \mathrm{ABC}$ and $\angle \mathrm{ACB}$ respectively

$$
\begin{array}{r}
\text { From } \angle \mathrm{HAC}=90^{\circ}-\theta \text { and } \angle \mathrm{OAC}=\quad\left(90^{\circ}-\beta\right) \\
\text { thus, } \angle \mathrm{HAO}=\left(90^{\circ}-\theta\right)-\left(90^{\circ}-\beta\right)=\beta-\theta
\end{array}
$$

Consider triangle AHO, from Law of Cosine,

$$
\cos (\beta-\theta)=\frac{(\mathrm{AH})^{2}+(\mathrm{AO})^{2}-(\mathrm{OH})^{2}}{2(\mathrm{AH})(\mathrm{AO})}
$$

$$
\begin{aligned}
&=\frac{4 R^{2} \cos ^{2} \alpha+R^{2}-(\mathrm{OH})^{2}}{2(2 R \cos \alpha) R} \\
&=\frac{4 R^{2} \cos ^{2} \alpha+R^{2}-(\mathrm{OH})^{2}}{4 R^{2} \cos \alpha} \\
&\left(4 R^{2} \cos \alpha\right)[\cos (\beta-\theta)]=4 R^{2} \cos ^{2} \alpha+R^{2}-(O H)^{2} \\
&(\mathrm{OH})^{2}=4 R^{2} \cos ^{2} \alpha+R^{2}-4 R^{2} \cos \alpha \cos (\beta-\theta) \\
&=R^{2}+4 R^{2} \cos \alpha[\cos \alpha-\cos (\beta-\theta)] \\
&=R^{2}-4 R^{2} \cos \alpha[\cos \alpha(\beta+\theta)-\cos (\beta-\theta)] \\
&=R^{2}-4 R^{2} \cos \alpha(2 \cos \beta \cos \theta) \\
&=R^{2}-8 R^{2} \cos \alpha \cos \beta \cos \theta
\end{aligned}
$$

then, the distance from the circumcenter to the orthocenter of the Archimedes' Triangle is in the form $(\mathrm{OH})^{2}=R^{2}-8 R^{2} \cos \alpha \cos \beta \cos \theta$

4.4 Distance from the Center of the Nine-Point Circle to the Incenter of the Archimedes' Triangle

Definition 7 Two circles are touch internally; iff the difference of the length of their radius is equal to distance between their centers.

Determine point $\mathrm{O}, \mathrm{I}, \mathrm{N}$ and H is the circumcenter, incenter, and center of the Nine-Point Circle and the orthocenter of the Archimedes' Triangle ABC respectively.

Figure 11 the Nine-Point circle and the Inscribed Circle of Archimedes' Triangle

Let $A O=R$ is radius of the Circumscribed Circle of Archimedes' Triangle $\mathrm{NP}_{1}=\frac{R}{2} \quad$ is radius of the Nine-Point Circle of Archimedes' Triangle $\mathrm{IQ}_{2}=r$ is radius of the Inscribed Circle of Archimedes' Triangle

IN is distance from center of the Nine-Point Circle to incenter of Archimedes' Triangle
Consider figure 11.2; because of the center of the Nine-Point Circle, circumcenter and orthocenter of the the triangle are collinear, and center of the Nine-Point Circle is the midpoint of the circumcenter to the orthocenter, (Yiu, 1998), therefore, the line is the median of triangle HIO

Determine the length of line HO, IO and HI is equal a, b and c respectively, so that

$$
\begin{aligned}
& |\mathrm{IN}|=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}} \\
& (\mathrm{IN})^{2}=\frac{(\mathrm{OI})^{2}}{2}+\frac{(\mathrm{IH})^{2}}{2}-\frac{(\mathrm{OH})^{2}}{4}
\end{aligned}
$$

From (6), (7) and (8)

$$
\begin{aligned}
(\mathrm{IN})^{2} & =\frac{R^{2}-2 R r}{2}+\frac{2 r^{2}-4 R^{2} \cos \alpha \cos \beta \cos \theta}{2}-\left(\frac{R^{2}-8 R^{2} \cos \alpha \cos \beta \cos \theta}{4}\right) \\
& =\frac{2 R^{2}-4 R r+4 r^{2}-8 R^{2} \cos \alpha \cos \beta \cos \theta-R^{2}+8 R^{2} \cos \alpha \cos \beta \cos \theta}{4} \\
& =\frac{R^{2}-4 R r+4 r^{2}}{4} \\
& =\frac{(R-2 r)(R-2 r)}{4} \\
& =\left(\frac{R-2 r}{2}\right)^{2} \\
\mathrm{IN} & =\frac{R}{2}-r
\end{aligned}
$$

Then. the Distance from Center of the Nine-Point Circle to the Incenter of the Archimedes' Triangle is equal to the difference of the length of their radius.

5. The Relationship between the Nine-Point Circle and the Inscribed Circle of Archimedes' Triangle

From topic 4.4 ; the difference of the length of the radius of the Nine-Point Circle and the Inscribed Circle is equal to the distance between their centers, by definition 7 the result is two circles are touch internally.

Then, the relationship of the two circles is the Nine-Point Circle and the Inscribed Circle of Archimedes' Triangle are touch internally.

Remark

This research focus on the case parabolic curve $y=a x^{2}$ only, because Even though the curve place on another where in rectangular co-ordinate system, we can certainly format by sliding the axis, adjust or changing the variable to the form $y=a x^{2}$.

Discussion

This research point out studying about the relationship of the Nine-Point Circle, the Circumscribed Circle and the Inscribed Circle of Archimedes' Triangle by using analytical geometry and trigonometry proof. the result revealed that; the radius of the Nine-Point Circle of an Archimedes' Triangle is half of the radius of the Circumscribed Circle of the Archimedes' Triangle; this knowledge discovery is in accord with the research of Cook (1929), Court (1980) and also Hung (2011), their results showed that; the radius of the Nine-Point Circle is half of radius of the Circumscribed Circle of triangle. Other result of this research is the Nine-Point Circle and the Inscribed Circle of Archimedes' Triangle are touch internally; knowledge discovery is in accord with the research result by using projective geometry proof researches of Krishna (2016), research result by vertex changing to the form complex number of Yiu (1998) and also research result of Dekov (2009) which found that; the Nine-Point Circle and the Inscribed Circle of Archimedes' Triangle are touch internally, thus, this research is in line with academicians and according to the hypothesis.

Conclusion and Suggestion

The result of this research showed that; the radius of the Nine-Point Circle of an Archimedes' Triangle is half of the radius of the Circumscribed Circle of Archimedes’ Triangle and is the Nine-Point Circle and the Inscribed Circle of Archimedes' Triangle are touch internally, this conclusion can conduce towards knowledge extending other topic about Archimedes' Triangle and the center, radius or area of the Nine-Point Circle of Archimedes' Triangle. In addition; anyone interested ought to study the property or relationship of Spieker Circle, Pedal Circle, Nagel-Point or Gergonne-Point, etc.

Acknowledgement

We are Thankful to the Research and Development Institute, Pibulsongkram Rajabhat University, for their financial support, and all Participants, who contributed to the accomplishment of this research.

References

Cook, N. M. (1929). A Triangle and ITS Circles. Kansas: Kansas State Agricultural College.
Court, N. A. (1980). College Geometry (2nd ed.). New York: Dover Publication, Inc.
Davis, T. (2002). Four Points on a Circle. Retrieved May 29, 2015, from http://www.geometer.org/ mathcircles

Dekov, D. (2009). Computer-Generated Mathematics: the Feuerbach Point. Journal of Computer-Generated Euclidean Geometry, 3, 1-6.

Dunham, W. (1998). Euler the Master of Us all. Washington, DC: the Mathematical Association of America.
Erbas, K. A. (2000). An Explanatory Approach to Archimedes's Quadrature of the Parabola. Retrieved from http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Erbas/emat6690/essay1/ essay1.html
Hung, F. (2011). Radius of 9-Points Circle Half of Circumradius. Retrieved from http://www.hkedcity. net/ihouse/fh7878/

Krishna, D. N. V. (2016). Yet Another New Proof of Feuerbach's theorem. Global Journal of Science Frontier Research (F), 14(1), 9-16.

Manoosilp, P. (2014).the relationship between the Centroid of Archimedes' Parabolic Segment and the Centroid of Archimedes' Triangle. Srinakharinwirot Science Journal, 30(2), 151-165.

Rimcholakarn, Y. (2017) . Relationship between area of Archimedes' Parabolic Segment and area of Archimedes'Triangle. Naresuan University Journal Science and Technology, 25(1), 158-167.

Woltermann, M. (2014). Archimedes' Squaring of Parabola. Retrieved from www2.washjeff.edu/users/ mwoltermann/Dorrie/56.pdf

Yiu, P. (1998). Euclidean Geometry. Florida: Florida Atlantic University.
Yiu, P. (2001). Introduction to the Geometry of the Triangle. Florida: Florida Atlantic University.

