กรุปอินเวอร์สของเมทริกซ์ขนาด 3×3 เหนือริง
 วิวรรธน์ วณิชาภิชาติ ${ }^{1}$ และณัฐกชนันท์ คำบรรลือ ${ }^{2^{*}}$

The Group Inverse of 3×3 Matrices Over a Ring.

Wiwat Wanicharpichat ${ }^{1}$ and Natkodchanan Khambunlue ${ }^{2^{*}}$

${ }^{1}$ สถานวิจัยเพื่อความเป็นเลิศทางวิชาการด้านคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร อำเภอเมือง จังหวัดพิษณุโลก 65000
${ }^{2}$ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร อำเภอเมือง จังหวัดพิษณุโลก 65000

* Corresponding author. E-mail address: natkod_kham18@hotmail.com

In this paper, we study conditions for the existence of the group inverse of the 3×3 matrix $\left.N=\begin{array}{lll}e & h_{1} & h_{2} \\ v_{1} & a & c \\ v_{2} & b & d\end{array}\right]$ over an arbitrary ring R with unity 1 , when $M=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ is the submatrix of N has the group inverse in $R^{2 \times 2}$.

Keywords: von Neumann regularity, $\{1,2\}$-inverse, Group inverse, Matrix over a ring.

Let \mathbb{C} and \mathbb{R} be the field of complex numbers and real numbers respectively. For a positive integers m, n, let $\mathbb{C}^{m \times n}$ be the set of all $m \times n$ matrices over C. The set of all complex vectors, or $n \times 1$ matrices over \mathbb{C} is denoted by \mathbb{C}^{n}. We denote the identity

For a given $A \in \mathbb{C}^{m \times n}$, the unique matrix $X \in \mathbb{C}^{n \times m}$ satisfying (1), (2), and (5) is called the group inverse of A and denoted by $A^{\#}$ Dos

Unlike the Moore-Penrose inverse, which always exists, the group inverse need not exist for all square matrices. A well known necessary and sufficient condition for the existence of $A^{\#}$ is that satisfying

$$
\begin{gathered}
A X A=A, \\
X A X=X, \\
(A X)^{*}=A X, \\
(X A)^{*}=X A,
\end{gathered}
$$

1)

(2)
(3)
(4)
is called the Moore-Penrose inverse of \boldsymbol{A} and is denoted by A^{\dagger} (see Ben-Israel, \& Greville, 2003).

We also consider the following equations which are applicable to square matrices

$$
A^{\#}=A^{-1}=A^{\dagger}
$$

The group inverse has applications in singular differential and difference equations, Markov chains and iterative methods. Heinig, 1997, pp. 321-342 investigated the group inverse of Sylvester transformation. Wei, \& Diao, 2005, pp. 109-123 studied the representation of the group inverse of a real singular Toeplitz matrix which arises in scientific computing and engineering. Catral, Olesky, \&

Driessche, 2008, pp. 219-233 studied the existence of $A^{\#}$ (see Cao, Ge, Wang, \& Zhang, 2013).

If A and B are square invertible matrices, then $(A B)^{-1}=B^{-1} A^{-1}$. However, for a generalized inverse this need not be true. Rajesh Kannan \& Bapat, 2014 (Theorem 2.2) asserted that for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}, \quad(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ if and only if $B B^{*} A^{\dagger} A$ and $B^{-}=(A+B)^{-}$is a \{1\}-inverse of B, for any $A^{*} A B B^{\dagger}$ are Hermitian.
$(A+B)^{-}$.
Proof: Since $A^{+} B=B^{+} A=O_{3}$, then

Preliminaries and Auxiliary Results

We shall be now concerned with generalized inverses that satisfy some, but not all, of the four Penrose equations.

Definition 2.1. [Ben-Israel \& Greville, 2003, p. 40]. For any $A \in \mathbb{C}^{m \times n}$, let $A\{i, j, \ldots, k\}$ denote the set of the matrices $X \in \mathbb{C}^{n \times m}$ which satisfies equations (i), $(j), \ldots,(k)$ from among equations (1)-(4). A matrix $X \in A\{i, j, \ldots, k\}$ is called an $\{i, j, \ldots, k\}$ - inverse of A, and also denoted by $A^{(i, j, \ldots, k)}$.

The examples are $\{1\}$-inverse (inner inverse), $\{1,2\}$ - inverse (reflexive inner inverse), $\{1,3\}$ inverse (least squares inner inverse), $\{1,4\}$ - inverse (minimum norm inner inverse), $\{1,2,3\}$-inverse, $\{1,2,4\}$-inverse and $\{1,2,3,4\}$-inverse, the last being the Moore-Penrose inverse of A.
by $A^{+}=A^{-} A A^{-}$. In the next section we will use the following result on regularity.

Lemma 2.2. Let $A \in R^{3 \times 3}$ be regular, $B \in R^{3 \times 3}$, be such that there exists A^{+}such that $A^{+} B=B^{+} A=O_{3}$. If $(A+B)$ is regular then B is regular and B $A B=B+A=O_{3}$, then $B=\left(I_{2}-A A^{+}\right)(A+B)=(A+B)\left(I_{2}-A^{+} A\right)$. Hence $B(A+B)^{-} B=\left(I_{2}-A A^{+}\right)(A+B)(A+B)^{-}(A+B)\left(I_{2}-A^{+} A\right)$ $=\left(I_{2}-A A^{+}\right)(A+B)\left(I_{2}-A^{+} A\right)=B$.
Therefore, B is regular and $(A+B)$ is an \{1\}inverse of B.

Recently, Patricio, \& Hartwig, 2010 characterize the existence of the group inverse of a two by two matrix with zero $(2,2)$ entry, over an arbitrary ring. Castro-Gonzalez, Robles, \& Velez-Cerrada, 2013 gave the conditions for the existence of the 2×2 the matrix $M=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ has group inverse in $R^{2 \times 2}$ in a ring with unity 1 , and derived a representation of the group inverse of M in the case when either the entry a or d has a group inverse in R. Cao, et al., 2013 studied the group inverse of 2×2 block matrices $M:=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ over rings R with unity 1 , where

Let R be a ring with unity 1/ An element $a \in R \quad C A=C, A B=B$, and the group inverse of $D-C B$ is said to be von Neumann regular (regular) if there exists. In this paper, we study the group inverse of exists an element a^{-}of R such that $a a^{-} a=a$. In 3×3 matrices this case, a^{3} is called a \{1\}-inverse of a. An element a^{+}of R is a $\{1,2\}$ - inverse of a, which is given by $a^{+}=a^{-} a a^{-}$(see [4] for example). Let R be a over an arbitrary ring R with unity 1 , under the ring, not necessarily commutative.

Recall that an element $a \in R$ is said to be a unit if it has an inverse, if there is an element $a^{-1} \in R$ such that $a \cdot a^{-1}=a^{-1} \cdot a=1$ (see for example Bhaskara Rao, 2002 (p.16). We denote an arbitrary \{1\}-inverse of A by A^{-}and $\{1,2\}$ - inverse of A, which is given
condition the 2×2 submatrix M has group inverse.

Now we assume that $M \in R^{2 \times 2}$ is regular and that M^{+}is a fixed but arbitrary $\{1,2\}$ - inverse of M. Let us introduce the notation
$E=I_{2}-M M^{+}, F=I_{2}-M^{+} M, s=e-h^{T} M^{+} v$.

We note that $F F=F$ and $E E=E$, since

$$
\begin{aligned}
E E=\left(I_{2}-M M^{+}\right)\left(I_{2}-M M^{+}\right) & =\left(I_{2}-M M^{+}\right)-M M^{+}\left(I_{2}-M M^{+}\right) \\
& =\left(I_{2}-M M^{+}\right)-\left(M M^{+}-M M^{+} M M^{+}\right) \\
& =I_{2}-M M^{+}-M M^{+}+\left(M M^{+} M\right) M^{+} \\
& =I_{2}-M M^{+}-M M^{+}+M M^{+} \\
& =I_{2}-M M^{+}=E,
\end{aligned}
$$

and

Proposition 2.4. Let $X, Y, Z \in R^{3 \times 3}$. If $N=X Z Y$ where X and Y are units and Z is regular, then the group inverse of N exists if and only if $T=Z Y X+I_{2}-Z Z^{-}$is a unit of $R^{3 \times 3}$, independent of the choice of Z^{-}. Equivalently, $S=Y X Z+I_{2}-Z^{-} Z$ is a unit, in which case

$$
\begin{array}{ll}
=I_{2}-M^{+} M-\left(M^{+} M-M^{+} M M^{+} M\right) & N^{\#}=X T^{-2} Z Y=X Z S^{-2} Y . ~
\end{array}
$$

$$
=I_{2}-M^{+} M-M^{+} M+\left(M^{+} M M^{+}\right) M
$$

$$
=I_{2}-M^{+} M-M^{+} M+M^{+} M
$$

$$
=I_{2}-M^{+} M=F
$$

The group inverse of a 3×3 matrix over ring with

We can decompose the matrix $N \in R^{3 \times 3}$ as follows.

Lemma 2.3. The matrix N in (2.1) can be factored into
unity 1 .

In the notation (2.2), we assume both Ev and $h^{T} F$ to be regular elements in $R^{2 \times 1}$ and $R^{1 \times 2}$ respectively. Set
$x=1-(E v)^{+} E v, \quad y=1-h^{T} F\left(h^{T} F\right)^{+}$
for fixed but arbitrary $(E v)^{+}$and $\left(h^{T} F\right)^{+}$and defined in (2.2). By direct computation, we see that $x x=x$ and $y y=y$.

The von Neumann regularity of the matrix $Z \in R^{3 \times 3}$ defined as in (2.3) is characterized in terms of the regularity of w as an element of the ring R in our next lemma. A representation for a $\{1\}$ inverse of A when it exists will prove extremely useful in the solution to our problem.
 [4, Lemma 1.2].
if and only if ${ }_{w}$ is regular in R.

Proof: We must show that,

$$
E M=M F=O_{2}, F M^{+}=M^{+} E=O_{2}, y h^{T} F=\left(h^{T} F\right)^{+} y=O_{2},
$$

where O_{2} is the zero square matrix of order 2 .
Firstly, from (2.2), $E=I_{2}-M M^{+}, F=I_{2}-M^{+} M$, we have

$$
\begin{aligned}
& E M=\left(I_{2}-M M^{+}\right) M=M-M M^{+} M=O_{2}=M-M M^{+} M=M\left(I_{2}-M^{+} M\right)=M F, \\
& F M^{+}=\left(I_{2}-M^{+} M\right) M^{+}=M^{+}-M^{+} M M^{+}=O_{2}=M^{+}-M^{+} M M^{+}=M^{+}\left(I_{2}-M M^{+}\right)=M^{+} E, \\
& y h^{T} F=\left(1-h^{T} F\left(h^{T} F\right)^{+}\right) h^{T} F=h^{T} F-h^{T} F\left(h^{T} F\right)^{+} h^{T} F=h^{T} F-h^{T} F=O_{2}, \\
& \left(h^{T} F\right)^{+} y=\left(h^{T} F\right)^{+}\left(1-h^{T} F\left(h^{T} F\right)^{+}\right)=\left(h^{T} F\right)^{+}-\left(h^{T} F\right)^{+} h^{T} F\left(h^{T} F\right)^{+}=\left(h^{T} F\right)^{+}-\left(h^{T} F\right)^{+}=O_{2} .
\end{aligned}
$$

Now, consider
$\left[\begin{array}{cc}1 & -y s(E v)^{+} E \\ 0 & I_{2}\end{array}\right]\left[\begin{array}{cc}s & h^{T} F \\ E v & M\end{array}\right]\left[\begin{array}{cc}1 & 0^{T} \\ -F\left(h^{T} F\right)^{+} s & I_{2}\end{array}\right]=\left[\begin{array}{cc}s-y s(E v)^{+} E E v & h^{T} F-y s(E v)^{+} E M \\ E v & M\end{array}\right]\left[\begin{array}{cc}1 & 0^{T} \\ -F\left(h^{T} F\right)^{+} s & I_{2}\end{array}\right]$

$$
=\left[\begin{array}{cc}
s-y s(E v)^{+} E v-h^{T} F\left(h^{T} F\right)^{+} s+y s(E v)^{+} 0 F\left(h^{T} F\right)^{+} s & h^{T} F-y s(E v)^{+} 0 \\
E v-0\left(h^{T} F\right)^{+} s & M
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
s-\left(1-h^{T} F\left(h^{T} F\right)^{+}\right) s(E v)^{+} E v-h^{T} F\left(h^{T} F\right)^{+} s & h^{T} F \\
E v & M
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
s-s(E v)^{+} E v+h^{T} F\left(h^{T} F\right)^{+} s(E v)^{+} E v-h^{T} F\left(h^{T} F\right)^{+} s & h^{T} F \\
E v & M
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
s x-h^{T} F\left(h^{T} F\right)^{+} s x & h^{T} F \\
E v & M
\end{array}\right] \\
& =\left[\begin{array}{cc}
{\left[1-h^{T} F\left(h^{T} F\right)^{+}\right] s x} & h^{T} F \\
E v & M
\end{array}\right]
\end{aligned}
$$

$=\left[\begin{array}{cc}y s x & h^{T} F \\ E v & M\end{array}\right]$
Let us denote

From above $P Z Q=\tilde{Z}$, consider nonsingular matrices. We have
 $\overline{\mathrm{Z}}=P Z Q=P\left(Z Z^{-} Z\right) Q=P Z\left(Q Q^{-1}\right) Z^{-1}\left(P^{-1} P\right) Z Q=P Z Q\left(Q^{-1} \bar{z}-1 P^{-1}\right) P Z Q=\tilde{\mathrm{z}}\left(Q^{-1} Z^{-1} P^{-1}\right) \overline{\mathrm{z}}$

Therefore Z is regular if and only if \tilde{Z} is regular.

$$
\text { Using } w=y s x \text { from (3.1), we can write }
$$

and

$$
\begin{aligned}
& \tilde{\mathrm{Z}}=\left[\begin{array}{cc}
0 & h^{T} F \\
E v & M
\end{array}\right]+\left[\begin{array}{cc}
w & 0^{T} \\
0 & O_{2}
\end{array}\right]=H+W . \\
& \text { e must show that } \tilde{Z} \text { is regular if and only if } w H^{+} W=\left[\begin{array}{c}
0 \\
F\left(h^{T} F\right)^{+}
\end{array}\right.
\end{aligned}
$$

Next, we must show that \tilde{Z} is regular if and only if w

$$
\left.\begin{array}{c}
(E M)^{+} E \\
M^{+}
\end{array}\right]\left[\begin{array}{ll}
w & 0^{T} \\
0 & O_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0^{T} \\
F\left(h^{T} F\right)^{+} w & O_{2}
\end{array}\right]
$$ is regular. We have that H is regular, which

$$
H^{-}=\left[\begin{array}{cc}
0 & 0^{T} \\
-F\left(h^{T} F\right)^{+} s & I_{2}
\end{array}\right]\left[\begin{array}{cc}
x w^{-} y & (E v)^{+} E \\
-F\left(h^{T} F\right)^{+} & M^{+}
\end{array}\right]\left[\begin{array}{cc}
0 & y s(E v)^{+} E \\
0 & I_{2}
\end{array}\right]
$$

is a $\{1\}$-inverse of Z, and

$$
H^{+}=\left[\begin{array}{cc}
0 & (E M)^{+} E \\
F\left(h^{T} F\right)^{+} & M^{+}
\end{array}\right]
$$

is a $\{1,2\}$ - inverse of H such that
$W H^{+}=H^{+} W=O_{3}$, since

Now, if \tilde{Z} is regular, then W is regular, by Lemma 2.2. This implies that ${ }_{w}$ is regular.

Conversely, assume that ${ }_{w}$ is regular. Let

$$
X=\left[\begin{array}{cc}
x w^{-} y & (E v)^{+} E \\
F\left(h^{T} F\right)^{+} & M^{+}
\end{array}\right] .
$$

We claim that X is a $\{1\}$-inverse of \tilde{Z} Consider,

$$
\tilde{\mathrm{Z}} \mathrm{X} \tilde{\mathrm{Z}}=\left[\begin{array}{cc}
w & h^{T} F \\
E v & M
\end{array}\right]\left[\begin{array}{cc}
x w^{-} w+1-x & 0^{T} \\
0 & M^{+} M+F\left(h^{T} F\right)^{+} h^{T} F
\end{array}\right]=\tilde{\mathrm{Z}} .
$$

Now,

In view of (3.2) we conclude that a $\{1\}$-inverse of Z is given by (3.3) and, thus, Z is regular. It remains to prove (3.4) but the proof of this is straightforward. In fact, for Z in (2.3) we have

$$
Z^{-}=\left[\begin{array}{ccc}
1 & 0^{T} \tag{3.3}\\
-F\left(h^{T} F\right)^{+} s & I_{2}
\end{array}\right]\left[\begin{array}{cc}
x w^{-} y & (E v)^{+} E \\
-F\left(h^{T} F\right)^{+} & M^{+}
\end{array}\right]\left[\begin{array}{cc}
1 & -y s(E v)^{+} E \\
0 & I_{2}
\end{array}\right]
$$

is a $\{1\}$-inverse of Z. By direct computation we have

$$
I_{3}-Z Z^{-}=\left[\begin{array}{cc}
\left(1-w w^{-}\right) y & -\left(1-w w^{-}\right) y s(E v)^{+} E \tag{3.4}\\
0 & \left(1-E v(E v)^{+}\right) E
\end{array}\right]
$$

From, our assumption, we have M is the group inverse. Then we can set $M^{+}=M^{\#}$. In this case, in the notation of (2.2) we have $E=I_{2}-M M^{\#}=I_{2}-M^{\#} M=F . \quad$ It follows that $M E=E M^{\#}=O_{2}$, since
$M E=M\left(I_{2}-M^{\#} M\right)=M-M M^{\#} M=M-M=O_{2}$,
$E M^{\#}=\left(I_{2}-M^{\#} M\right) M^{\#}=M^{\#}-M^{\#} M M^{\#}=M^{\#}-M^{\#}=O_{2}$.
We claim that $M+E$ is a unit of $R^{2 \times 2}$ and

$$
(M+E)^{-1}=M^{\#}+E .
$$

For, exists if and only if

$$
T=Z Y X+I_{3}-Z Z^{-}=\left[\begin{array}{cc}
s+\left(1-w w^{-}\right) y & s h^{T} M^{\#}+h^{T} E-\left(1-w w^{-}\right) y s(E v)^{+} E \\
v & M+v h^{T} M^{\#}+\left(1-E v(E v)^{+}\right) E
\end{array}\right]
$$

Now, let us introduce the matrix

$$
G=\left[\begin{array}{cc}
1 & (E v)^{+} E-h^{T} M^{\#} \\
0 & I_{2}
\end{array}\right] .
$$

We have

$$
T G=\left[\begin{array}{cc}
s+\left(1-w w^{-}\right) y & u^{T} \tag{3.8}\\
v & K
\end{array}\right]
$$

where

$$
\begin{align*}
K & =M+E+M M^{\#} v(E v)^{+} E=(M+E)\left(1+M^{\#} v(E v)^{+} E\right) \\
u & =\left(s+\left(1-w w^{-}\right) y\right)\left((E v)^{+} E-h^{T} M^{\#}\right)+\left(s h^{T} M^{\#}+h^{T} E-\left(1-w w^{-}\right) y s(E v)^{+} E\right) . \tag{3.9}
\end{align*}
$$

Since the element $M^{\#} v(E v)^{+} E$ is 2-nilpotent, because

$$
\left(M^{\#} v(E v)^{+} E\right)\left(M^{\#} v(E v)^{+} E\right)=M^{\#} v(E v)^{+} E M^{\#} v(E v)^{+} E=M^{\#} v(E v)^{+} 0 v(E v)^{+} E=O
$$

It follows that $1+M^{\#} v(E v)^{+} E$ is a unit of R.

$$
\left(1+M^{\#} v(E v)^{+} E\right)\left(1-M^{\#} v(E v)^{+} E\right)=\left(\left(1-M^{\#} v(E v)^{+} E\right)+M^{\#} v(E v)^{+} E\left(1-M^{\#} v(E v)^{+} E\right)\right)
$$

$$
=1-M^{\#} v(E v)^{+} E+M^{\#} v(E v)^{+} E-M^{\#} v(E v)^{+} E M^{\#} v(E v)^{+} E
$$

$$
=1-M^{\#} v(E v)^{+} 0 v(E v)^{+} E
$$

Moreover $M+E$ is a unit because M has group inverse. Thus, K is a unit and

On account that the element $(2,2)$ of the matrix $T G \quad$ only if the Schur complement is a unit of R. is a unit, it follows that $T G$ is a unit of $R^{2 \times 2}$ if and Therefore, the matrix T is a unit if and only if

(3.11)
is a unit in R. From (3.10), we get $S v=E v+M^{\#} v x$.
Now,

$$
\begin{aligned}
S v & =\left[\left(1-M^{\#} v(E v)^{+} E\right)\left(M^{\#}+E\right)\right] v \\
& =\left[\left(M^{\#}+E\right)-M^{\#} v(E v)^{+} E\left(M^{\#}+E\right)\right] v \\
& =\left[M^{\#}+E-M^{\#} v(E v)^{+} E M^{\#}-M^{\#} v(E v)^{+} E E\right] v \\
& =M^{\#} v+E v-M^{\#} v(E v)^{+} 0 v-M^{\#} v(E v)^{+} E E v \\
& =E v+M^{\#} v-M^{\#} v(E v)^{+} E E v \\
& =E v+M^{\#} v\left(1-(E v)^{+} E v\right) \\
& =E v+M^{\#} v x .
\end{aligned}
$$

Further, using that last relation of (3.9) we obtain

$$
u S v=s(1-x)+h^{T} E v-\left(1-w w^{-}\right) y\left[(s-1)+\left(1+h^{T}\left(M^{\#}\right)^{2} v\right) x\right]
$$

By substituting this expression in (3.11), we conclude that r has the form given in (3.5). By

Proposition 2.4, $N^{\#}=X T^{-2} Z Y$. From (3.8), it follows that

$$
(T G)^{-1}=\left[\begin{array}{cc}
r^{-1} & -r^{-1} u S \\
-S v r^{-1} & S+S v r^{-1} u S
\end{array}\right]
$$

Next, we compute

$$
X T^{-1}=X G(T G)^{-1}=\left[\begin{array}{cc}
1 & h^{T} M^{\#} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & (E v)^{+} E-h^{T} M^{\#} \\
0 & 1
\end{array}\right](T G)^{-1}
$$

$$
=\left[\begin{array}{cc}
x r^{-1} & (E v)^{+} E-x r^{-1} u S \tag{3.12}\\
-S r^{-1} & S+S v r^{-1} u S
\end{array}\right] .
$$

Now,

respectively. In deriving the last equality, we have multiplied on the left expression (3.11) by r^{-1}. Then

$$
\begin{align*}
T^{-1} Z Y & =G(T G)^{-1} Z Y \\
& =G(T G)^{-1}\left[\begin{array}{cc}
s & h^{T} E \\
E v & M
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
M^{\#} v & I_{2}
\end{array}\right] \\
& =G\left[\begin{array}{cc}
r^{-1} & -r^{-1} u S \\
-S v r^{-1} & S+S v r^{-1} u S
\end{array}\right]\left[\begin{array}{cc}
s & h^{T} E \\
v & M
\end{array}\right] \tag{3.14}\\
& =\left[\begin{array}{cc}
1 & (E v)^{+} E-h^{T} M^{\#} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1-\gamma & \Theta \\
S v \gamma & M^{\#} M-S v \Theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-\left(1+h^{T}\left(M^{\#}\right)^{2} v\right) x \gamma & -h^{T} M^{\#}+\left(1+h^{T}\left(M^{\#}\right)^{2} v\right) x \Theta \\
S v \gamma & M^{\#} M-S v \Theta
\end{array}\right.
\end{align*}
$$

Using (3.12) and (3.14), we obtain
where

$$
\omega_{1}=(1-x) \gamma-x r^{-1}\left(u S^{2} v \gamma-1+\left(1+h^{T}\left(M^{\#}\right)^{2} v\right) x \gamma\right)
$$

$$
\Omega_{2}=S^{2} v \gamma+u v r^{-1}\left(u S^{2} v \gamma-1+\left(1+h^{T}\left(M^{\#}\right)^{2} v\right) x \gamma\right) \text {, }
$$

$$
\Omega_{3}=(x-1) \Theta+x r^{-1}\left(u S^{2} v \Theta-u M^{\#}-h^{T} M^{\#}+\left(1+h^{T}\left(M^{\#}\right)^{2} v\right) x \Theta\right)
$$

From (3.10), it follows that $S^{2} v=S v-M^{\#}\left(v-M^{\#} v x\right)$.

$$
\Omega_{4}=M^{\#}-S^{2} v \Theta-S v r^{-1}\left(u S^{2} v \Theta-u M^{\#}-h^{T} M^{\#}+\left(1+h^{T}\left(M^{\#}\right)^{2} v\right) x \Theta\right)
$$

$$
\begin{aligned}
& \text { it follows that } \begin{aligned}
S^{2} v= & S v-M^{\#}\left(v-M^{\#} v x\right) . \\
& =S(E) v+S M^{\#} v x \\
& =S\left(1-M^{\#} M\right) v+S M^{\#} v x \\
& =S v-S M^{\#} M v+S M^{\#} v x \\
& =S v-M^{\#} v+\left(\left(1-M^{\#} v(E v)^{+} E\right)\left(M^{\#}+E\right)\right) M^{\#} v x \\
& =S v-M^{\#} v+\left(\left(M^{\#} M^{\#} v x+E M^{\#} v x\right)-M^{\#} v(E v)^{+} E E M^{\#} v x\right) \\
& =S v-M^{\#} v+M^{\#} M^{\#} v x+E M^{\#} v x-M^{\#} v(E v)^{+} E E M^{\#} v x \\
& =S v-M^{\#} v+M^{\#} M^{\#} v x \\
& =S v-M^{\#}\left(v-M^{\#} v x\right) .
\end{aligned}
\end{aligned}
$$

Using this latter expression and (3.13) we get

$$
r^{-1} u S^{2} v=r^{-1} u S v-r^{-1} u M^{\#}\left(v-M^{\#} v x\right)=r^{-1} s+\gamma-1+\gamma h^{T}\left(M^{\#}\right)^{2}\left(v-M^{\#} v x\right)
$$

By substituting this into (3.15), using $r^{-1} u M^{\#}=-\gamma h^{T}\left(M^{\#}\right)^{2}$, and regrouping terms we get (3.6).

Conclusions

In this work we have studied conditions for the existence of the group inverse of the 3×3 matrix over a ring with unity 1 under some development certain conditions.

Acknowledgement

The authors thank the referee for valuable comments.

References

Ben-Israel, A., \& Greville, N. E. (2003).
Generalized Inverses, Theory and Applications, Second Edition. New York: Springer.

Electronic Journal of Linear Algebra (ELA), 11, 219-233.

Heinig, G. (1997). The group inverse of the transformation $\mathfrak{S}(X)=A X-X B$, . Linear Algebra and its Applications, 257, 321-342.
Bhaskara Rao, K. P. S. (2002). The Theory of Generalized Inverses over Commutative Rings.

Puystjens, R., \& Hartwig, R. E. (1997). The group inverse of a companion matrix. Linear and Multilinear Algebra, 43, 137-150.

Puystjens, R., \& Hartwig, R. E. (2010). The (2, 2, 0) group inverse problem. Appl. Math. Comput, 217,516-520.

Castro-Gonzalez, N., Robles, J., \& Velez-Cerrada, Rajesh Kannan, M., \& Bapat, R. B. (2014). J. Y. (2013). The group inverse of 2×2 matrices over a ring. Linear Algebra and its Applications, 438 , 3600-3609.

Catral, M., Olesky, D. D. \& Driessche, P. (2008). Group inverse of matrices with path graphs.

Generalized principal pivot transform. Linear Algebra and its Applications, 454, 49-56.

Wei, Y., \& Diao, H., (2005). On group inverse of singular Toeplitz matrices. Linear Algebra and its Applications, 399, 109-123.

