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Abstract
e h h
In this paper, we study conditions for the existence of the group inverse of the 3x3 matrix N = v, a ¢ over an
v, bd
. ; . . a ¢ T . . o2x2
arbitrary ring R with unity 1, when M = et is the submatrix of N has the group inverse in R7“,
Keywords: von Neumann regularity, {1,2} -inverse, Group inverse, Matrix over a ring.
Introduction AX = XA (5)

For a given AeC™", the unique matrix X € C™"
Let € and R be the field of complex numbers & Y q =

satisfying (1), (2), and (5) ‘is called the group inverse

and real numbers respectively. For a positive integers
of A and denoted by A"

m,N, 1let C™" be the set of all mxn matrices over

. Unlike the Moore-Penrose inverse, which always
C." The set of all complex vectors, or Nxl matrices

! . . exists, the group inverse need not exist for all square
over € is'denoted by €" . 'We denote the identity ’ BRP F

| ki matrices. A well known necessary and @ sufficient
and  the zero matrix in C by I, and GO,

’ 3 B condition . for - -the - existence of A* is that
respectively. Note that A" stands for (A)T,

rank(A) =rank(A?). If ‘A s nonsingular, then

For a given AeC™", the unique matrix = X e C™"
7l e,
satisfying 2 F A Japten
The group inverse has applications in singular
AXA=A, Y differential and difference equations, Markov chains
XAX =X A 2 ..
' @ and iterative methods. Heinig, 1997, pp. 321-342
() = AX, I .
, investigated the group inverse of Sylvester
(XA)" = XA, (4)

. . . t f tion. Wei, & Di 2005 . 109-123
is called the Moore-Penrose inverse of a and is ranstormation s 120, » PP

denoted by A’ (see Ben-Israel, & Greville, 2003). studied the representation of the group inverse of a

. . . . real singular Toeplitz matrix which arises in scientific
We also consider the following equations which g P

are applicable to square matrices computing and engineering. Catral, Olesky, &
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Driessche, 2008, pp. 219-233 studied the existence
of A* (see Cao, Ge, Wang, & Zhang, 2013).

If Aand B are square invertible matrices, then
(AB)*=BA™. However, for a generalized inverse
this need not be true. Rajesh Kannan & Bapat, 2014
(Theorem 2.2) asserted that for  AeC™"
(AB)" =BTA" if and only if BB*A'A and
A"ABB' are Hermitian.

and

BeC™P,

Preliminaries and Auxiliary Results

We shall be now concerned with generalized
inverses that satisfy some, but not all, of the four
Penrose equations.

Definition 2.1. [Ben-Israel & Greville, 2003, p. 40].
For any AeC™", let A{i,],....k} denote the set of the
matrices ~ X e C™™ _ which

@@, (J), ++s (k) from among equations (1) - (4). A

satisfies equations
matrix X € A, j,...k} is-called an {i,j,...,k}- inverse
of A, and also denoted by ATk,

The examples are {I}inverse (inner inverse),
a8
inverse (least squares inner inverse), {1, 4} inverse
(minimum norm inner-inverse), {l 2, 3} inverse,

{L, 2, 4} inverse and {1, 2, 3, 4}inverse, the last

{L; 2} inverse (reflexive inner inverse),

being the Moore—Penrose inverse of * A,

Let R be a ring with unity 1 An'element a€R
is said to be von Neumann regular (regular)-if there
exists an element a~ of R such that aaa=a. In
this case, a” is called a {I}-inverse of 4 An element
a” of R isa {l, 2}-inverse of @, which is given
by a"=aaa  (see [4] for example). Let R be a
ring, not necessarily commutative.

Recall that an element @€R is said to be a unit if
it has an inverse, if there is an element a*eR such
that a-at=at.-a=1 (see for example Bhaskara Rao,
2002 (p.16). We denote an arbitrary {}- inverse of

A by A" and {l, 2} inverse of A, which is given

by A" = A"AA". In the next section we will use the

following result on regularity.

Lemma 22. Let AeR*® be regular, BeR*>® be
such that there exists A'such that A*B=B*A=0,.

If (A+B) is regular then B is regular and

B =(A+ B)_ is a {l+inverse of B, for any
(A+B)".
Proof: Since A'B=B"A=0,, then
B=(l,-AA")(A+B)=(A+B)(l,—A*A). Hence
B(A+B) B =(l;— AA")(A+B)(A+B) (A+B)(I, — A*A)
= (1, - AA")(A+B)(I,— A*A) = B.
Therefore, B is regular and (A+ B)= is an {-
inverse of - B. ]
Recently, Patricio, & Hartwig, 2010 characterize
the existence of the group inverse of a two by two
matrix with zero (2,2) entry, over an arbitrary ring.
Castro—Gonzalez, Robles, & Velez-Cerrada, 2013

gave the conditions for the existence of the 2x2 the
j a.c . . y
matrix M :{b d} has group inverse in R*? in a

ring with unity 1, and derived a representation of the
group inverse of M in the case when either the entry
a or-0 has a group inverse in R Cao, et al., 2013

studied the group inverse of 2x2 block matrices

A
M =
i

CA=C, AB=B, and the group inverse of D-CB

B
D} over rings’ R with unity 1 ‘where
exists. In this paper, we study the group inverse of

B

over an arbitrary ring R with unity 1 under the

3x3_matrices

(21)

=z

]
—FF 1
< o
L T
=
>

<
N
o
o o

condition the 2x2 submatrix M has group inverse.

Now we assume that M eR>? is regular and
that M™ is a fixed but arbitrary {1, 2} inverse of
M. Let us introduce the notation

E=1,-MM*, F=1,-M*M, s=e—h"M"*v. (2.2)

We note that FF=F and EE =E, since



EE=(I,-MM*)(I,-MM*) =(l,~MM*)—=MM*(l, - MM ")

=(l,-MM*) = (MM* = MM *MM*)

=L, -MM*=MM* +(MM*M)M*
=I2—MM+—MM++MM+
=1,-MM~ =E,

and

FE=(l,-M*"M)(I,-M*M) =(I,-M*M)=M "M(l;=M*M)
=1,—-M*M = (M*M - M ‘MM *M)
= I,-M'M=M*M +(M*MM*)M
=l,-M*M-M*M4M*M
=1,-M"M =F,

R3><3

We can decompose the matrix N € as follows.

Lemma 2.3. The matrix N in (2.1) can be

factored into

T+ T 1 OT
Ly "Mgrs hF = XY ,“(2.3)
0 1, lev ™M JimHy

where

Proof:  Consider
T + T U
xzy |1 MHIls  nTE]RL 0
0 1 Ev M ||[M'v 1,
[s+h™ Eveh" FM v+ hT MMM v h'F +h"™M "M
Ev+ MM v M
_[e=n"M" V) +hTM (I, - MM WV +hT (I, =M *M)M v +h"M*v  h'E+hTM*M
Ev+ MM v M
T
_|e h N
v M

L]

We have a useful characterization the N* as in

[4, Lemma 1.2].

Proof: We must show that,
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Proposition 24. Let X,)Y,zeR*3. If N=XZY
where X and Y are units and L is regular, then the
group inverse of N exists if and only if
T=2ZYX +1,-2Z" is a unit of R*®, independent of
the choice of Z~. Equivalently, S=YXZ+1,-22
is a unit, in which case

N* = XT 22Y = XzS57%Y.

The group inverse of a 3x3 matrix over ring with

unity L

In the notation (2.2), we assume both EV and

h"F to be regular elements in R?Y and R™
respectively. Set
Xx=1—(EvV)"Ev, y=1—h"F(h"F)", w=ysx, (3.1)

for fixed but arbitrary (Ev)" and (h"F)", and s
defined in(2.2). By direct computation, we see that
oc—x and Yy =Y.
The von Neumann regularity of the matrix
ZeR*® defined as in (2.3) is characterized 'in
terms of the regularity of w as an element of the ring
R in our next lemma: A representation for a {I}-

inverse of A when it exists will prove extremely

useful in the solution to our problem.

Lemma3l. Let E,F,s,X Yy and y be as in (2.2) and

(3.1). We have that z :{ )
Ev

.
n F} is regular in R*®
M

if and only if  is regular in R.

EM =MF =0,, FM*=M*E=0,, ya/'F=(h"F)'y=0,,

where O, is the zero square matrix of order 2.

Firstly, from (22), E=1,-MM*, F=1,-M*M, we have
EM=(,-MM* M =M -MM*M =0, =M —~MM*M =M(l, -M M) = MF,
FM*=(l,-M"M)M*=M"=M*MM*=0,=M"=M*"MM*=M*(l,-MM*) =M 'E,
yh'F =(@-h"F(h"F))h'F=h"F-h"F(h"F)*"h"F =h"F —h'F =0,,
(h"F) y=(h"F)*A-h"F(h"F)")=(h"F)" =(h""F)*"h"F(h"F)" =(h"F)" = (h"F)" =0,

Now, consider
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{1 —ys(Ev)*E}{s hTFi| 1 0 :[s—ys(Ev)*EEv hTF—ys(Ev)*EM} 1 0
0 I, Ev M ||-F(WF)'s I, Ev M -F(F)'s 1,

~ {s —ys(Ev)*Ev-h"F(h"F)*s+ ys(Ev)'OF(h"F)*s h'F - ys(Ev)*O}

Ev-0(h"F)'s M
_|s=@-h"F(h"F)")s(Ev)*Ev-h"F(h"F)'s h'F

Ev M
_|s=s(Ev)*Ev+h"F(h"F)"s(Ev)"Ev-h"F(h"F)'s h'F

Ev M

_75[1—(Ev)*Ev]—hTF(hTF)+s[1—(Ev)*Ev} h'F
i Ev M
[sx=hTF(h"F)'sx h'F
L Ev M
;[1-hTF(hTF)+]sx h'F
L Ev M
[ysx nTF
|Ev. M |

Let us denote

PZQ::F _ys(Ev)* E}{ hF}[ 1 OT}
0 I, Ev.. M F(h"F)*s 1,

_{ysx h'F } {w h'F } (32)

Ev M

From  above PZQ=Z, consider. P and Q.  are O {W o' }[ 0 (EM)* E} _ {0 W(EM)* E}

nonsingular matrices. We have 0.0, lF(hNF)" M* 0 0,

Z=PZQ=P(2Z272)Q = PZ(QQHZ *(PP)ZQ = PZQ(Q'Z TP HPZQ=Z(Q'Z P Z. J {0 W(EM )+(|2 _ MM +):1 - [O WE*M ? f {O or }
0 0, 0 o, 0 O,

Therefore L is regular if and only if 7 is regular.

Using W=YSX from (3.1), we can write and

= Bl O FRTE Yy |w 07

Z= + =H +W. 2 i U

N2 5 o e A
N , . E(h'F)" . M* ][0 0,| |F(h"F)'w O,

Next, we must show that Z is regular if and only if

: : . 0 o i
is regular. We have that H is regular, which - = ;

F(h'F)'ysx. 0,| |0 O,
b 0 0" xwy (Ev'E {0 —ys(Ev)*E}
-F(h"F)'s 1, ||-F('F)" ~M* |0 I,

is a {I} inverse of Z, and i
% Now, if Z is regular, then W is regular, by Lemma
X { 0 (EM) E}

= 2.2. This implies that v is regular.
F'F)  M* ) v

) ) Conversely, assume that v is regular. Let
is a {1, 2} inverse of H such that

XZl: XWY (Ev)*E]I

WH* =H*W =0,, since
F(h'F)* M*
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We claim that X is a {I}-inverse of Z Consider,

~ ~ T ~ 1— T ~
Fx5_ w h'F || xww-+ X 0 _5
Ev M 0 M*M +F(h"F)"h"F

Xz ™y (EWEHWX hTF}

[F(h'F)* M* JLEv M
3 [ xw™yysx + (Ev)' EEv. xw yh"F + (Ev)' EM
| F("F)" ysx+ MTEv F(hTF)*hTF+M*M}
= [ xwysx =+ (Ev) Ev o'
r 0 F(hTF)*hTF+M+M:|
. [ xw w4+ (Ev)*Ev o'
4 0 M*M +F(hTF)*hTF}
__xw’w+1—x o'
- 0 M*M +F(hTF)*hTF}'

Now,

Indeed,
Z~Xzz{ysx hTFMXWW+1—X o' }:Z
Ev. M 0 M M +F(h"F)*h'F
[ysxOwW W+1=x) h"F(M*M +F(h"F)*h"F)
:_Ev(xw’w+1-x) MMM +FEh"F) h'F) }
[ ysxow w+ ysx— ysxx h"FM*M +h"FF(hF)"h"F
| Evww+Ev—Evx = MM*M +MF(h'F)*h'F }
[ YSXWTW + YSX =YX h"E(h"F)*h"F
B | EV(L—(Ev)" Ev)w w— Ev(1—(Ev)"EV) + Ev MM *M }
[ YSXW W h'F
K | Evw-w—Ev(EV)"Evww w—Ev+EV(Ev)" Ev+Ev.- M }
i WW W h'F
__va’w—va’w—Ev+Ev+Ev M}
[ow hTF}
Ev ' M
:_ysx hTF}
LEv M

In view of (3.2) we conclude that a {I}-inverse of  is given by (3.3) and, thus, Z is regular. It remains to

prove (3.4) but the proof of this is straightforward. In fact, for-Z in (2.3) we have
e il &

is a {}inverse of Z. By direct computation we have

(1w )y —(1—ww)ys(Ev)*E}

ly-22" {
0 (1-Ev(EV)")E
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From, our assumption, we have M is the group

inverse. Then we can set M* =M?¥. In this case, in

the notation of (2.2) we have
E=I,-MM*=1,-M*M =F. It follows that
ME =EM* =0,, since

ME =M(l,-M*M) =M -MM*M =M-M =0,

EM* =, -M*M)M*=M* - M*MM*=M* -M#=0,.
We claim that M +E_is a unitof R?? and

(M+E)'=M*+E.
For,

(M+E)YM*+E) =M(M*+E)+E(M*+E)
=MM*+ME +EM” + EE
=MM* +0,+0, +E
=MM* + (1, - MM#)
=0,,

and

(M* +E)(M +E) =M*(M +E)+E(M +E)
=M*M + M*E+EM +EE
=M*M +0,+0, +E
=M'M +(1,-M*M)
=0,.

o =y —x(dy -,

Theorem 32. Let M be group invertible. With the
notation (2.2) and under the assumptions of (3.1),
with- M ™ replaced by M* if \ is regular in R

then the group inverse of the matrix

21 [e nT
v M

(1>
o o 2
=

o o

exists if and only if
r=sx—h Ev+@—ww)y[s+@+h" (M#H2)x] (3.5)
is a unit of R In this case,

N# = @ L
Q==

where

Q, ==M*(v=M" W)y + (M vx+Ev)(1y—171),

Q=-0+x(yh"(M*)? 20 -rh"TM %),

(3.6)

Q=M £ M*(v-M*¥x)0 - (M*x + Ev)(yh" (M*)? + 2@ - r*h" M #),

with
y=rL-ww)y,
O=yh"M*+r*h'E,

(3.7)

2= p(@+hT (M*2 =M ) +r L (s+@+h" (M*)2v)x).

Proof: Write N=XZY as in (2.3), by Proposition
24, the group inverse of N exists if and only if

T =ZYX +1,—2ZZ" is a unit, independent of the

T—ZYX+I3ZZ_—|:
\

Now, let us introduce the matrix

0

choice of Z~. For the {I}- inverse provided in Lemma

3.1, we have

s+(@1—ww)y sh'M*+h"E—(1—ww)ys(Ev)'E

M +Vvh"M* + (1— Ev(Ev)")E }

oo [1 (Ev)*ElthM T.
2
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We have

TG_{5+(1—ww)y UTJ’ (28)
v K

where

K =M +E + MM*/(EVv)"E =(M +E)@+M*(EV)"E),
u=(s+@=ww)y)((EV)'E —h'M") + (sh"M* + h"E = (L—ww)ys(EVv)* E). (3.9)

Since the element |V|#V(EV)+ E is Znilpotent, because

(M*(Ev)" E)(MPV(Ev)"E) = M*v(Ev)" EM *V(Ev)" E = M¥v(Ev)* OV(EV)"E = O.
It follows that 1+ M*v(Ev)*E is a unit of R
@+ MA(EVE)1-M*(EV)'E) =(1—M*(EV)"E)+M*(Ev)'E@L-M*(EV)"E))
=1-M*(EV)"E + M*V(EV)"E - M *v(Ev)"EM */(EV)"E
=1-M*v(Ev)"Ov(EV)"E
.

Moreover M+ E is a unit because M has group inverse. Thus, K is a unit and

S=K*'={1-M"(Ev) E)(M*+E). (3.10)
On account that the element (2,2) of the matrix TG only if the Schur complement is a unit of R.
is a unit, it follows that TG is a unit' of R®? if and Therefore, the matrix T  is a-unit if and only if
r=s+(@l—ww)y—uSv (3.11)

is a unit in R From (3.10), we.get Sv.=Ev+M%"wx.
Now,
Sv =[(1-M*V(Bv)"E)(M* + E)]v
=[(M* + E)- M*(EV)*E(M* +E)]v
=[M*+ E=M"v(Ev) EM* = M*/(Ev)"EEV
=M™+ Ev~M *v(Ev)*0v - M*(Ev)*EEV
= Ev+M*v—M*(Ev) EEV
=Ev+M* (- (EV)"Ev)
=Ev+ M¥ux.

Further, using that last relation of (3.9) we obtain

uSv =s(@—x)+h"Ev—@L—ww)y[(s —1) + @+ h" (M #)?v)x].

By substituting this expression in (3.11), we Proposition 24, N* = XT™ZY. From (3.8), it follows
conclude that r has the form given in (3.5). By that
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—Svrt S+Svrlus

(Te)™ { o s }

Next, we compute

KT = XG(TGY {1 hTM#Hl (EV)'E—-h"M*

-1
o 1 Jo 1 }UG)

Z{ xr’l1 (EV)*E — xlrlus} . (312)
—Sr- S +SvruS
Now,
XT - = XG(TG) * = {1 h'M 1{1 (EV)'E ~h"M #}{ r —rus }
Q_uuinlaiii0 1 —Svr?  S4Svurlus
gz (Ev)*E—hTM#+hTM1 Y —rus }
0 1 —-Svrt S +Svr'us
1 (EwE] —r s
) o 1 “:—Svr1 S+ Svrlus:‘
[t o (Bv) ESVr T | —rluS + (Ev)"E(S+ Swr uS)
£ | 0-svr S-+Svr 'us }
L= (Ev) ESvr ! —r WS+ (Ev)" ES + (Ev) ESvr uS
a | 0-sSwr! S+ Svrus }
v [r = (EW*Evr™t (Ev)'E—r 'S + (Ev)* Evrlus} e
[+ 0-Swr! S +8vr'us
A= (EV)' EVr! (EV'E-(-(Ev) Ev)rlus
] | 0-swr? S+ SvruS }
[ xrt (Ev)'E-xrus
B |-Svr™* S +Svr'uS }
the last equality is due to the fact that ES =E. In the sequel, we denote
y=rt@-ww)y and. O=yh'M*+r'h'E
From (3.10), (3.9), and (3.11)it follows that
SM = M#M,
ruM’™M =—yh"™M*, (3.13)

rluSv=r(s+@—ww)y)—1=r's+y—1

respectively. In deriving the last equality, we have multiplied on the left expression (3.11) by r™’. Then
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T7zY =G(TG)*zY

s h'ell 1 O
=G(TG)™
e {Ev M }[M”v I,
—G rt -rus s n'E (3.14)
-Svrt S+Swrus|v M '

1 (Ev)'E-h'M*||1-# 6
0 1 Svy . M*M —sv@

1=@1+h"(M*)?V)xp =h"M* 1+ 1+ hT(M#)?V)x@
Svy MM —Sv@ :

Using (3.12).and (3.14), we obtain
xrt (B E—xrus ||1-@+h" (M*H)2)xy —h"™™M* 4+ @ +h" (M#)2v)xe
“Svrt S+Svrus Svy M*M —Sve

:‘0193
Q, Q,f

wp= 1= X)y—=xrHUuSAy =1+ @+ h"(M")*W)xy),
Q, = S?vy +uvr (uS?vy —1+(@+h" (M*)2v)xy),
Q. =(x-D)O +xr (SO —uM* —h"™M* + L+ hT (M*)?v)x0), (3.15)
Q; =M*=8v@ ~Svr*(uSV@ —uM* —h"M* + @+ h" (M*)?v)x0).
From (3.10), it follows that S?v=Sv=M%*(v— M *wx).
S = S(Sv) = S(Ev+M *vx)
=S(E)V +SM *vx
=S@1—-M*M)v+ SM *vx
=8v—SM*Mv + SM *vx
=Sv—M* +(1-M*(EV) E)M* + E))M*x
=5v—M* +((M*M *vx + EM *vx) - M¥*v(Ev)' EEM *vx)
= Sv—M¥v.+ M*M *ux + EM fvx— M *v(Ev)" EEM "ux
= Sv—M v+ M*M *vx
=Sv—M*(v—M*x).
Using this latter expression and (3.13) we get

ruS?v = ruSv = ruM (v — M x) = riis+ y — 1+ yhT (M#)2 (v = M vx).

XTlzy = {

where

By substituting this into (3.15), using r'uM”=—yh" (M*)?, and regrouping terms we get (3.6).

Conclusions Acknowledgement

In this work we have studied conditions for the The authors thank the referee for valuable

existence of the group inverse of the 3x3 matrix comments.
over a ring with unity 1 under some development

certain conditions.



144 Naresuan University Journal: Science and Technology 2014; 22(3)

References

Ben-Israel, A., & Greville, N. E. (2003).

Generalized Inverses, Theory and Applications,

Second Edition. New York: Springer.

Bhaskara Rao, K. P. S. (2002). The Theory of
Generalized Inverses  over Commutative Rings.

London and New York: Taylor & Francis.

Cao, C., Ge, Y., Wang, Y., & Zhang, H. (2013).
Group inverse for two classes of 2x2 block matrices
over rings. Comp. Appl. Math., 2014(33), 469-
479.

Castro-Gonzalez, N., Robles, J., & Velez-Cerrada,
J. Y. (2013). The group inverse of %2 matrices over
a'ring. Linear Algebra and its Applications, 438,
3600-3609.

Catral, M., Olesky, D. D. & Driessche, P. (2008).

Group inverse ~of matrices with path graphs.

Electronic Journal of Linear Algebra (ELA), 11,
219-233.

Heinig, G. (1997). The group inverse of the
transformation &(X)=AX — XB,. Linear Algebra

and its Applications, 257, 321-342.

Puystjens, R., & Hartwig, R. E. (1997). The group

inverse ~of a Linear and

Multilinear Algebra, 43, 137-150.

companion . matrix.

Puystjens, R., & Hartwig, R. E. (2010). The (2, 2,
0) group inverse problem. Appl.~Math. Comput,
217, 516-520.

Rajesh Kannan, M., & Bapat, R. B. (2014).
Generalized principal pivot transform. Linear Algebra

and its Applications, 454, 49-56.

Wei, Y., & Diao, H., (2005). On group inverse of’
singular Toeplitz' matrices. Linear Algebra and its

Applications, 399, 109-123.



