กรุปอินเวอร์สของเมทริกซ์ขนาด 3×3 เหนือริง

้ วิวรรธน์ วณิชาภิชาติ 1 และณัฐกชนันท์ คำบรรลือ $^{2^*}$

The Group Inverse of 3×3 Matrices Over a Ring.

Wiwat Wanicharpichat¹ and Natkodchanan Khambunlue^{2*}

¹สถานวิจัยเพื่อความเป็น<mark>เลิศทา</mark>งวิชาการด้านคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร อำเภอเมือง จังหวัดพิษณุโลก 65000

²ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร อำเภอเมือง จังหวัดพิษณุโลก 65000

Corresponding author. E-mail address: natkod_kham18@hotmail.com

Abstract

In this paper, we study conditions for the existence of the group inverse of the 3×3 matrix $N = |v_1 - a| c$ over an

arbitrary ring R with unity 1, when $M = \begin{vmatrix} a & c \\ b & d \end{vmatrix}$ is the submatrix of N has the group inverse in $R^{2\times 2}$

Keywords: von Neumann regularity, {1,2} -inverse, Group inverse, Matrix over a ring.

Introduction

Let \mathbb{C} and \mathbb{R} be the field of complex numbers and real numbers respectively. For a positive integers m,n, let $\mathbb{C}^{m\times n}$ be the set of all $m\times n$ matrices over \mathbb{C} . The set of all complex vectors, or $n\times 1$ matrices over \mathbb{C} is denoted by \mathbb{C}^n . We denote the identity and the zero matrix in $\mathbb{C}^{m\times n}$ by I_n and O_n , respectively. Note that A^* stands for $(\overline{A})^{\mathrm{T}}$.

For a given $A \in \mathbb{C}^{m \times n}$, the unique matrix $X \in \mathbb{C}^{m \times m}$ satisfying

AXA = A,	(1)
XAX = X,	(2)
$\left(AX\right) ^{\ast }=AX,$	(3)
$(XA)^* = XA,$	(4)

is called the Moore-Penrose inverse of A and is denoted by A^{\dagger} (see Ben-Israel, & Greville, 2003).

We also consider the following equations which are applicable to square matrices

For a given $A \in \mathbb{C}^{m \times n}$, the unique matrix $X \in \mathbb{C}^{n \times m}$ satisfying (1), (2), and (5) is called the group inverse of A and denoted by $A^{\#}$.

AX = XA

Unlike the Moore-Penrose inverse, which always exists, the group inverse need not exist for all square matrices. A well known necessary and sufficient condition for the existence of $A^{\#}$ is that rank(A) = rank(A^2). If A is nonsingular, then $A^{\#} = A^{-1} = A^{\dagger}$.

The group inverse has applications in singular differential and difference equations, Markov chains and iterative methods. Heinig, 1997, pp. 321-342 investigated the group inverse of Sylvester transformation. Wei, & Diao, 2005, pp. 109-123 studied the representation of the group inverse of a real singular Toeplitz matrix which arises in scientific computing and engineering. Catral, Olesky, &

(5)

Driessche, 2008, pp. 219–233 studied the existence of $A^{\#}$ (see Cao, Ge, Wang, & Zhang, 2013).

If *A* and *B* are square invertible matrices, then $(AB)^{-1} = B^{-1}A^{-1}$. However, for a generalized inverse this need not be true. Rajesh Kannan & Bapat, 2014 (Theorem 2.2) asserted that for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}$, $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ if and only if $BB^{*}A^{\dagger}A$ and $A^{*}ABB^{\dagger}$ are Hermitian,

Preliminaries and Auxiliary Results

We shall be now concerned with generalized inverses that satisfy some, but not all, of the four Penrose equations.

Definition 2.1. [Ben–Israel & Greville, 2003, p. 40]. For any $A \in \mathbb{C}^{m \times n}$, let $A\{i, j, ..., k\}$ denote the set of the matrices $X \in \mathbb{C}^{n \times m}$ which satisfies equations (i), (j), ..., (k) from among equations (1) - (4). A matrix $X \in A\{i, j, ..., k\}$ is called an $\{i, j, ..., k\}$ - inverse of A, and also denoted by $A^{(i, j, ..., k)}$.

The examples are $\{1\}$ -inverse (inner inverse), $\{1, 2\}$ -inverse (reflexive inner inverse), $\{1, 3\}$ inverse (least squares inner inverse), $\{1, 4\}$ -inverse (minimum norm inner inverse), $\{1, 2, 3\}$ -inverse, $\{1, 2, 4\}$ -inverse and $\{1, 2, 3, 4\}$ -inverse, the last being the Moore-Penrose inverse of A.

Let R be a ring with unity 1. An element $a \in R$ is said to be von Neumann regular (regular) if there exists an element a^- of R such that $aa^-a = a$. In this case, a^- is called a {1}-inverse of a. An element a^+ of R is a {1, 2}- inverse of a, which is given by $a^+ = a^-aa^-$ (see [4] for example). Let R be a ring, not necessarily commutative.

Recall that an element $a \in R$ is said to be a unit if it has an inverse, if there is an element $a^{-1} \in R$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$ (see for example Bhaskara Rao, 2002 (p.16). We denote an arbitrary {1}-inverse of $_A$ by A^- and {1, 2}- inverse of A, which is given by $A^+ = A^-AA^-$. In the next section we will use the following result on regularity.

Lemma 2.2. Let $A \in \mathbb{R}^{3\times 3}$ be regular, $B \in \mathbb{R}^{3\times 3}$, be such that there exists A^+ such that $A^+B = B^+A = O_3$. If (A+B) is regular then *B* is regular and $B^{-} = (A+B)^{-}$ is a {1}-inverse of B, for any $(A+B)^{-}$. **Proof:** Since $A^+B = B^+A = O_3$, then $B = (I_2 - AA^+)(A + B) = (A + B)(I_2 - A^+A)$. Hence $B(A+B)^{-}B = (I_2 - AA^{+})(A+B)(A+B)^{-}(A+B)(I_2 - A^{+}A)$ $= (I_2 - AA^+)(A + B)(I_2 - A^+A) = B.$ Therefore, *B* is regular and $(A + B)^{-1}$ is an {1}inverse of B. Recently, Patricio, & Hartwig, 2010 characterize the existence of the group inverse of a two by two matrix with zero (2,2) entry, over an arbitrary ring. Castro-Gonzalez, Robles, & Velez-Cerrada, 2013 gave the conditions for the existence of the 2×2 the matrix $M = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ has group inverse in $R^{2 \times 2}$ in a ring with unity 1, and derived a representation of the group inverse of M in the case when either the entry a or d has a group inverse in \mathbb{R} Cao, et al., 2013 studied the group inverse of 2×2 block matrices $M \coloneqq \begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ over rings } R \text{ with unity 1, where}$ CA = C, AB = B, and the group inverse of D - CBexists. In this paper, we study the group inverse of 3×3 matrices

$$N = \begin{bmatrix} e & h_1 & h_2 \\ v_1 & a & c \\ v_2 & b & d \end{bmatrix} = \begin{bmatrix} e & h^T \\ v & M \end{bmatrix}$$
(2.1)

over an arbitrary ring \overline{R} with unity 1, under the condition the 2×2 submatrix M has group inverse.

Now we assume that $M \in \mathbb{R}^{2\times 2}$ is regular and that M^+ is a fixed but arbitrary {1, 2}- inverse of M. Let us introduce the notation

$$E = I_2 - MM^+, \ F = I_2 - M^+M, \ s = e - h^T M^+v.$$
 (2.2)

We note that FF = F and EE = E, since

$$\begin{split} EE &= (I_2 - MM^+)(I_2 - MM^+) &= (I_2 - MM^+) - MM^+(I_2 - MM^+) \\ &= (I_2 - MM^+) - (MM^+ - MM^+MM^+) \\ &= I_2 - MM^+ - MM^+ + (MM^+M)M^+ \\ &= I_2 - MM^+ - MM^+ + MM^+ \\ &= I_2 - MM^+ = E, \end{split}$$

and

 $FF = (I_2 - M^+M)(I_2 - M^+M) = (I_2 - M^+M) - M^+M(I_2 - M^+M)$ = $I_2 - M^+M - (M^+M - M^+MM^+M)$ = $I_2 - M^+M - M^+M + (M^+MM^+)M$ = $I_2 - M^+M - M^+M + M^+M$ = $I_2 - M^+M = F$.

We can decompose the matrix $N \in \mathbb{R}^{3\times 3}$ as follows.

Lemma 2.3. The matrix N in (2.1) can be factored into

$$N = \begin{bmatrix} 1 & h^T M^+ \\ 0 & I_2 \end{bmatrix} \begin{bmatrix} s & h^T F \\ Ev & M \end{bmatrix} \begin{bmatrix} 1 & 0^T \\ M^+ v & I_2 \end{bmatrix} \Rightarrow XZY , (2.3)$$

where
$$X = \begin{bmatrix} 1 & h^T M^+ \\ 0 & I_2 \end{bmatrix}, Z = \begin{bmatrix} s & h^T F \\ Ev & M \end{bmatrix}, Y = \begin{bmatrix} 1 & 0^T \\ M^+ v & I_2 \end{bmatrix}.$$

Proof: Consider
$$XZY = \begin{bmatrix} 1 & h^T M^+ \\ Ev & M \end{bmatrix} \begin{bmatrix} s & h^T F \\ Ev & M \end{bmatrix} = \begin{bmatrix} 1 & 0^T \\ M^+ v & I_2 \end{bmatrix}.$$

$$= \begin{bmatrix} s + h^T M^* E v + h^T F M^* v + h^T M^* M M^* v & h^T F + h^T M^* M \\ E v + M M^* v & M \end{bmatrix}$$

$$= \begin{bmatrix} (e - h^T M^* v) + h^T M^* (I_2 - M M^*) v + h^T (I_2 - M^* M) M^* v + h^T M^* v & h^T F + h^T M^* N \\ E v + M M^* v & M \end{bmatrix}$$

$$= \begin{bmatrix} e - h^T \\ v & M \end{bmatrix} = N.$$

We have a useful characterization the $N^{\#}$ as in [4, Lemma 1.2].

Proposition 2.4. Let $X, Y, Z \in \mathbb{R}^{3\times3}$. If N = XZY where X and Y are units and Z is regular, then the group inverse of N exists if and only if $T = ZYX + I_2 - ZZ^-$ is a unit of $\mathbb{R}^{3\times3}$, independent of the choice of Z^- . Equivalently, $S = YXZ + I_2 - Z^-Z$ is a unit, in which case

$$N^{\#} = XT^{-2}ZY = XZS^{-2}Y.$$

The group inverse of a 3×3 matrix over ring with unity 1.

In the notation (2.2), we assume both Ev and $h^T F$ to be regular elements in $R^{2\times 1}$ and $R^{1\times 2}$ respectively. Set

 $x = 1 - (Ev)^+ Ev$, $y = 1 - h^T F(h^T F)^+$, w = ysx, (3.1) for fixed but arbitrary $(Ev)^+$ and $(h^T F)^+$, and s defined in (2.2). By direct computation, we see that xx = x and yy = y.

The von Neumann regularity of the matrix $Z \in R^{3\times 3}$ defined as in (2.3) is characterized in terms of the regularity of w as an element of the ring R in our next lemma. A representation for a {1}-inverse of A when it exists will prove extremely useful in the solution to our problem.

Lemma 3.1. Let E, F, s, x, y and w be as in (2.2) and (3.1). We have that $Z = \begin{bmatrix} s & h^T F \\ Ev & M \end{bmatrix}$ is regular in $R^{3\times 3}$ if and only if w is regular in R.

Proof: We must show that,

$$EM = MF = O_2, FM^+ = M^+E = O_2, yh^TF = (h^TF)^+ y = O_2,$$

 \square

where O_2 is the zero square matrix of order 2.

Firstly, from (2.2),
$$E = I_2 - MM^+$$
, $F = I_2 - M^+M$, we have
 $EM = (I_2 - MM^+)M = M - MM^+M = O_2 = M - MM^+M = M(I_2 - M^+M) = MF$,
 $FM^+ = (I_2 - M^+M)M^+ = M^+ - M^+MM^+ = O_2 = M^+ - M^+MM^+ = M^+(I_2 - MM^+) = M^+E$,
 $yh^T F = (1 - h^T F(h^T F)^+)h^T F = h^T F - h^T F(h^T F)^+h^T F = h^T F - h^T F = O_2$,
 $(h^T F)^+ y = (h^T F)^+(1 - h^T F(h^T F)^+) = (h^T F)^+ - (h^T F)^+h^T F(h^T F)^+ = (h^T F)^+ - (h^T F)^+ = O_2$.

Now, consider

138

We claim that X is a {1}-inverse of \tilde{Z} Consider,

$$\tilde{Z}X\,\tilde{Z} = \begin{bmatrix} w & h^T F \\ Ev & M \end{bmatrix} \begin{bmatrix} xw^-w + 1 - x & 0^T \\ 0 & M^+M + F(h^T F)^+ h^T F \end{bmatrix} = \tilde{Z}$$

Now,

$$\begin{split} \mathbf{X} \vec{x} = \begin{bmatrix} xw^{\top}y & (Ev)^{+}E \\ F(h^{T}F)^{+} & M^{+} \end{bmatrix} \begin{bmatrix} yx x & h^{T}F \\ Ev & M \end{bmatrix} \\ = \begin{bmatrix} xw^{\top}yxx + (Ev)^{+}Ev & xw^{\top}yh^{T}F + (Ev)^{+}EM \\ F(h^{T}F)^{+}yxx + M^{+}Ev & F(h^{T}F)^{+}h^{T}F + M^{+}M \end{bmatrix} \\ = \begin{bmatrix} xw^{\top}yxx + (Ev)^{+}Ev & 0^{T} \\ 0 & F(h^{T}F)^{+}h^{T}F \end{bmatrix} \\ = \begin{bmatrix} xw^{\top}wx + (Ev)^{+}Ev & 0^{T} \\ 0 & M^{+}M + F(h^{T}F)^{+}h^{T}F \end{bmatrix} \\ = \begin{bmatrix} xw^{\top}w + 1 - x & 0^{T} \\ 0 & M^{+}M + F(h^{T}F)^{+}h^{T}F \end{bmatrix} \\ = \begin{bmatrix} xw^{\top}ww + 1 - x & 0^{T} \\ 0 & M^{+}M + F(h^{T}F)^{+}h^{T}F \end{bmatrix} \\ = \begin{bmatrix} xw^{\top}ww + 1 - x & 0^{T} \\ 0 & M^{+}M + F(h^{T}F)^{+}h^{T}F \end{bmatrix} \\ = \begin{bmatrix} yxx(ww + 1 - x) & h^{T}F(M^{+}M + F(h^{T}F)^{+}h^{T}F) \\ Ev(ww + 1 - x) & M(M^{-}M + F(h^{T}F)^{+}h^{T}F) \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} yxx(ww + 1 - x) & h^{T}F(M^{+}M + F(h^{T}F)^{+}h^{T}F) \\ Ev(ww + 1 - x) & M(M^{-}M + F(h^{T}F)^{+}h^{T}F) \\ Ev(ww + 1 - x) & M(M^{-}M + H^{T}F(h^{T}F)^{+}h^{T}F) \end{bmatrix} \\ \begin{bmatrix} yxx(ww + 1 - x) & M(M^{-}M + F(h^{T}F)^{+}h^{T}F) \\ Ev(ww + 1 - x) & M(M^{-}M + H^{T}F)F(h^{T}F)^{+}h^{T}F \\ Evw^{-}w + Ev(Ev)^{-}Evv & MM^{-}M + M^{T}F^{T}F(h^{T}F)^{+}h^{T}F \end{bmatrix} \\ \begin{bmatrix} yxxw^{-}w + Evv - Evv & MM^{-}M + MF(h^{T}F)^{+}h^{T}F \\ Evw^{-}w - Evv(Ev)^{-}Evv + Ev + Ev + Ev - M \end{bmatrix} \\ \begin{bmatrix} ww^{-}w - Ev(Ev)^{-}Evv + Ev + Ev + Ev - Ev & M^{T}F \\ Evw^{-}w - Evv(Ev)^{-}Ev + Ev + Ev + Ev - Ev & M^{T}F \\ Evw^{-}w - Evw^{-}W - Ev + Ev + Ev + Ev - M \end{bmatrix} \\ \begin{bmatrix} w^{-}h^{T}F \\ Evw^{-}w - Evw^{-}W - Ev + Ev + Ev + Ev - M \end{bmatrix} \\ \begin{bmatrix} w^{-}h^{T}F \\ Evw^{-}W - Evw^{-}W - Ev + Ev + Ev + Ev - M \end{bmatrix} \\ \begin{bmatrix} w^{-}h^{T}F \\ Evw^{-}W - Evw^{-}W - Ev + Ev + Ev + Ev - M \end{bmatrix} \\ \begin{bmatrix} w^{-}h^{T}F \\ Ev - M \end{bmatrix} \\ \begin{bmatrix} w^{-}h^{T}F \\ Ev - M \end{bmatrix} \\ \end{bmatrix} \end{aligned}$$

In view of (3.2) we conclude that a {1}-inverse of Z is given by (3.3) and, thus, Z is regular. It remains to prove (3.4) but the proof of this is straightforward. In fact, for Z in (2.3) we have

$$Z^{-} = \begin{bmatrix} 1 & 0^{T} \\ -F(h^{T}F)^{+}s & I_{2} \end{bmatrix} \begin{bmatrix} xw^{-}y & (Ev)^{+}E \\ -F(h^{T}F)^{+}s & I_{2} \end{bmatrix} \begin{bmatrix} -F(h^{T}F)^{+} & M^{+} \end{bmatrix} \begin{bmatrix} 1 & -ys(Ev)^{+}E \\ 0 & I_{2} \end{bmatrix}$$
(3.3)

is a $\{1\}$ -inverse of Z. By direct computation we have

$$I_{3} - ZZ^{-} = \begin{bmatrix} (1 - ww^{-})y & -(1 - ww^{-})ys(Ev)^{+}E\\ 0 & (1 - Ev(Ev)^{+})E \end{bmatrix}.$$
(3.4)

From, our assumption, we have M is the group **Theorem** 3.2. Let M be group invertible. With the inverse. Then we can set $M^+ = M^{\#}$. In this case, in notation (2.2) and under the assumptions of (3.1), with M^+ replaced by $M^{\#}$ if w is regular in Rnotation the of (2.2)we have $E = I_2 - MM^{\#} = I_2 - M^{\#}M = F.$ then the group inverse of the matrix It follows that $ME = EM^{\#} = O_2$, since $N = \begin{bmatrix} e & h_1 & h_2 \\ v_1 & a & c \\ v_2 & b & d \end{bmatrix} = \begin{bmatrix} e & h^T \\ v & M \end{bmatrix}$ $ME = M(I_2 - M^{\#}M) = M - MM^{\#}M = M - M = O_2,$ $EM^{\#} = (I_2 - M^{\#}M)M^{\#} = M^{\#} - M^{\#}MM^{\#} = M^{\#} - M^{\#} = O_2.$ We claim that M + E is a unit of $R^{2 \times 2}$ and $(M+E)^{-1} = M^{\#} + E.$ exists if and only if For, $(M + E)(M^{\#} + E) = M(M^{\#} + E) + E(M^{\#} + E)$ $r = sx - h^{T} Ev + (1 - ww^{-}) y[s + (1 + h^{T} (M^{\#})^{2} v)x]$ (3.5) $= MM^{\#} + ME + EM^{\#} + EE$ $= MM^{\#} + O_2 + O_2 + E$ $= MM^{\#} + (I_2 - MM^{\#})$ is a unit of R. In this case, $= O_2,$ Ω_{2} and $(M^{\#} + E)(M + E) = M^{\#}(M + E) + E(M + E)$ $= M^{*}M + M^{*}E + EM + EE$ where $= M^{\#}M + O_2 + O_2 + E$ $=M^{\#}M + (I_2 - M^{\#}M)$ $= O_2$ $\omega_1 = \gamma - x(\lambda \gamma - r^{-1}).$ $\Omega_2 = -M^{\#}(v - M^{\#}vx)\gamma + (M^{\#}vx + Ev)(\lambda\gamma - r^{-1})$ $\Omega_3 = -\Theta + x(\gamma h^T (M^{\#})^2 + \lambda \Theta - r^{-1} h^T M^{\#}),$ $\Omega_{d} = M^{\#} + M^{\#}(v - M^{\#}vx)\Theta - (M^{\#}vx + Ev)(\gamma h^{T}(M^{\#})^{2} + \lambda\Theta - r^{1}h^{T}M^{\#}),$ with $r = r^{-1}(1 - ww^{-})y,$ $\Theta = \gamma \mathbf{h}^T M^{\#} + r^{-1} h^T E,$

(3.7)

(3.6)

 $\lambda = \gamma (1 + h^T (M^{\#})^2 (v - M^{\#} vx)) + r^{-1} (s + (1 + h^T (M^{\#})^2 v)x)$

choice of Z^- . For the {1}-inverse provided in Lemma 3.1, we have

Proof: Write N = XZY as in (2.3), by Proposition 2.4, the group inverse of N exists if and only if $T = ZYX + I_3 - ZZ^-$ is a unit, independent of the

$$T = ZYX + I_3 - ZZ^- = \begin{bmatrix} s + (1 - ww^-)y & sh^T M^{\#} + h^T E - (1 - ww^-)ys(Ev)^+ E \\ v & M + vh^T M^{\#} + (1 - Ev(Ev)^+)E \end{bmatrix}$$

Now, let us introduce the matrix

$$G = \begin{bmatrix} 1 & (Ev)^+ E - h^T M^\# \\ 0 & I_2 \end{bmatrix}.$$

We have

$$TG = \begin{bmatrix} s + (1 - ww^{-})y & u^{T} \\ v & K \end{bmatrix},$$
(3.8)

where

 $K = M + E + MM^{\#}v(Ev)^{+}E = (M + E)(1 + M^{\#}v(Ev)^{+}E),$ $u = (s + (1 - ww^{-})y)((Ev)^{+}E - h^{T}M^{\#}) + (sh^{T}M^{\#} + h^{T}E - (1 - ww^{-})ys(Ev)^{+}E).$ (3.9)

Since the element $M^{\#}v(Ev)^{+}E$ is 2-nilpotent, because

$$(M^{\#}v(Ev)^{+}E)(M^{\#}v(Ev)^{+}E) = M^{\#}v(Ev)^{+}EM^{\#}v(Ev)^{+}E = M^{\#}v(Ev)^{+}0v(Ev)^{+}E = O.$$

It follows that $1 + M^{\#}v(Ev)^{+}E$ is a unit of \mathbb{R} .

$$(1 + M^{\#}v(Ev)^{+}E)(1 - M^{\#}v(Ev)^{+}E) = ((1 - M^{\#}v(Ev)^{+}E) + M^{\#}v(Ev)^{+}E(1 - M^{\#}v(Ev)^{+}E))$$

= 1 - M^{\#}v(Ev)^{+}E + M^{\#}v(Ev)^{+}E - M^{\#}v(Ev)^{+}EM^{\#}v(Ev)^{+}E
= 1 - M^{\#}v(Ev)^{+}0v(Ev)^{+}E
= 1.

Moreover M + E is a unit because M has group inverse. Thus, K is a unit and

$$S = K^{-1} = (1 - M^{\#} v(Ev)^{+} E)(M^{\#} + E).$$
(3.10)

On account that the element (2,2) of the matrix TG only if the Schur complement is a unit of R. is a unit, it follows that TG is a unit of $R^{2\times 2}$ if and Therefore, the matrix T is a unit if and only if

$$r = s + (1 - ww^{-})y - uSv$$

is a unit in R. From (3.10), we get $Sv = Ev + M^{\#}vx$.

Now,

$$Sv = [(1 - M^{\#}v(Ev)^{+}E)(M^{\#} + E)]v$$

= $[(M^{\#} + E) - M^{\#}v(Ev)^{+}E(M^{\#} + E)]v$
= $[M^{\#} + E - M^{\#}v(Ev)^{+}EM^{\#} - M^{\#}v(Ev)^{+}EE]v$
= $M^{\#}v + Ev - M^{\#}v(Ev)^{+}0v - M^{\#}v(Ev)^{+}EEv$
= $Ev + M^{\#}v - M^{\#}v(Ev)^{+}EEv$
= $Ev + M^{\#}v(1 - (Ev)^{+}Ev)$
= $Ev + M^{\#}vx.$

Further, using that last relation of (3.9) we obtain

$$uSv = s(1-x) + h^{T}Ev - (1 - ww^{-})y[(s-1) + (1 + h^{T}(M^{\#})^{2}v)x].$$

By substituting this expression in (3.11), we conclude that r has the form given in (3.5). By

Proposition 2.4, $N^{\#} = XT^{-2}ZY$. From (3.8), it follows that

(3.11)

 $(TG)^{-1} = \begin{bmatrix} r^{-1} & -r^{-1}uS \\ -Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}.$

Next, we compute

$$XT^{-1} = XG(TG)^{-1} = \begin{bmatrix} 1 & h^{T}M^{\#} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & (Ev)^{+}E - h^{T}M^{\#} \\ 0 & 1 \end{bmatrix} (TG)^{-1}$$
$$= \begin{bmatrix} xr^{-1} & (Ev)^{+}E - xr^{-1}uS \\ -Sr^{-1} & S + Svr^{-1}uS \end{bmatrix}.$$
(3.12)

Now,

$$XT^{-1} = XG(TG)^{-1} = \begin{bmatrix} 1 & h^{T}M^{*}\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & (Ev)^{+}E - h^{T}M^{*}\\ 0 & 1 \end{bmatrix} \begin{bmatrix} r^{-1}\\ -Svr^{-1} & F^{-1}vS \end{bmatrix}$$
$$= \begin{bmatrix} 1 & (Ev)^{+}E - h^{T}M^{*} + h^{T}M^{*}\\ 0 & 1 \end{bmatrix} \begin{bmatrix} r^{-1}\\ -Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} 1 & (Ev)^{+}E B \end{bmatrix} \begin{bmatrix} r^{-1}\\ -Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}E Svr^{-1} - r^{-1}uS + (Ev)^{+}E(S + Svr^{-1}uS) \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}E Svr^{-1} - r^{-1}uS + (Ev)^{+}E(S + Svr^{-1}uS) \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}ESvr^{-1} - (Ev)^{+}E - r^{-1}uS + (Ev)^{+}Evr^{-1}uS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}E - r^{-1}uS + (Ev)^{+}Evr^{-1}uS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} 4 - (Ev)^{+}Evr^{-1} - (Ev)^{+}E - r^{-1}uS + (Ev)^{+}Evr^{-1}uS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} xr^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}E - r^{-1}uS + (Ev)^{+}Evr^{-1}uS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} xr^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}Evr^{-1}uS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} xr^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}Evr^{-1}uS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}Evr^{-1}vS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}Evr^{-1}vS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}Evr^{-1}vS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}Evr^{-1}vS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}Evr^{-1}vS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$
$$= \begin{bmatrix} r^{-1} - (Ev)^{+}Evr^{-1} - (Ev)^{+}Evr^{-1}vS \\ 0 - Svr^{-1} & S + Svr^{-1}uS \end{bmatrix}$$

From (3.10), (3.9), and (3.11) it follows that

$$SM = M^{\#}M,$$

$$r^{-1}uM^{\#}M = -\gamma h^{T}M^{\#},$$

$$r^{-1}uSv = r^{-1}(s + (1 - ww^{-})y) - 1 = r^{-1}s + \gamma - 1$$
(3.13)

respectively. In deriving the last equality, we have multiplied on the left expression (3.11) by r^{-1} . Then

$$T^{-1}ZY = G(TG)^{-1}ZY$$

$$= G(TG)^{-1} \begin{bmatrix} s & h^{T}E \\ Ev & M \end{bmatrix} \begin{bmatrix} 1 & 0 \\ M^{\#}v & I_{2} \end{bmatrix}$$

$$= G\begin{bmatrix} r^{-1} & -r^{-1}uS \\ -Svr^{-1} & S + Svr^{-1}uS \end{bmatrix} \begin{bmatrix} s & h^{T}E \\ v & M \end{bmatrix}$$

$$= \begin{bmatrix} 1 & (Ev)^{+}E - h^{T}M^{\#} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 - \gamma & \Theta \\ Sv\gamma - M^{\#}M - Sv\Theta \end{bmatrix}$$

$$= \begin{bmatrix} 1 - (1 + h^{T}(M^{\#})^{2}v)x\gamma & -h^{T}M^{\#} + (1 + h^{T}(M^{\#})^{2}v)x\Theta \\ Sv\gamma & M^{\#}M - Sv\Theta \end{bmatrix}.$$
(3.14)

Using (3.12) and (3.14), we obtain

$$XT^{-1}ZY = \begin{bmatrix} xr^{-1} & (Ev)^{+}E - xr^{-1}uS \\ -Svr^{-1} & S + Svr^{-1}uS \end{bmatrix} \begin{bmatrix} 1 - (1 + h^{T}(M^{\#})^{2}v)x\gamma & -h^{T}M^{\#} + (1 + h^{T}(M^{\#})^{2}v)x\Theta \\ Sv\gamma & M^{\#}M - Sv\Theta \end{bmatrix}$$
$$= \begin{bmatrix} \omega_{1} & \Omega_{3} \\ \Omega_{2} & \Omega_{4} \end{bmatrix},$$

where

$$\begin{aligned} \omega_{1} &= (1-x)\gamma + xr^{-1}(uS^{2}v\gamma - 1 + (1+h^{T}(M^{*})^{2}v)x\gamma), \\ \Omega_{2} &= S^{2}v\gamma + uvr^{-1}(uS^{2}v\gamma - 1 + (1+h^{T}(M^{*})^{2}v)x\gamma), \\ \Omega_{3} &= (x-1)\Theta + xr^{-1}(uS^{2}v\Theta - uM^{*} - h^{T}M^{*} + (1+h^{T}(M^{*})^{2}v)x\Theta), \\ \Omega_{4} &= M^{*} - S^{2}v\Theta - Svr^{-1}(uS^{2}v\Theta - uM^{*} - h^{T}M^{*} + (1+h^{T}(M^{*})^{2}v)x\Theta). \end{aligned}$$
(3.15)
From (3.10), it follows that $S^{2}v = Sv - M^{*}(v - M^{*}vx). \\ S^{2}v &= S(Sv) = S(Ev + M^{*}vx) \\ &= S(E)v + SM^{*}vx \\ &= S(-M^{*}M)v + SM^{*}vx \\ &= Sv - M^{*}v + ((1-M^{*}v(Ev)^{*}E)(M^{*} + E))M^{*}vx \\ &= Sv - M^{*}v + ((1-M^{*}v(Ev)^{*}E)(M^{*} + E))M^{*}vx \\ &= Sv - M^{*}v + M^{*}M^{*}vx + EM^{*}vx - M^{*}v(Ev)^{*}EEM^{*}vx) \\ &= Sv - M^{*}v + M^{*}M^{*}vx + EM^{*}vx - M^{*}v(Ev)^{*}EEM^{*}vx \\ &= Sv - M^{*}v + M^{*}M^{*}vx \\ &= Sv + M^{*}v + M^{*}W^{*}vx \\ &= Sv + M^{*}v + M^{*}vx \\ &= Sv + M^{*}v + M^{*}v + M^{*}vx \\ &= Sv + M^{*}v + M^{*}v + M^{*}v \\ &= Sv + M^{*}v + M^{*}v +$

Conclusions

Acknowledgement

In this work we have studied conditions for the existence of the group inverse of the 3×3 matrix over a ring with unity 1 under some development certain conditions.

The authors thank the referee for valuable comments.

References

Ben-Israel, A., & Greville, N. E. (2003). Generalized Inverses, Theory and Applications, Second Edition. New York: Springer.

Bhaskara Rao, K. P. S. (2002). The Theory of Generalized Inverses over Commutative Rings. London and New York: Taylor & Francis.

Cao, C., Ge, Y., Wang, Y., & Zhang, H. (2013). Group inverse for two classes of 2×2 block matrices over rings. *Comp. Appl. Math.*, 2014(33), 469– 479.

Castro-Gonzalez, N., Robles, J., & Velez-Cerrada, J. Y. (2013). The group inverse of 2×2 matrices over a ring. *Linear Algebra and its Applications*, 438, 3600-3609.

Catral, M., Olesky, D. D. & Driessche, P. (2008). Group inverse of matrices with path graphs. Electronic Journal of Linear Algebra (ELA), 11, 219-233.

Heinig, G. (1997). The group inverse of the transformation $\mathfrak{S}(X) = AX - XB$, Linear Algebra and its Applications, 257, 321-342.

Puystjens, R., & Hartwig, R. E. (1997). The group inverse of a companion matrix. *Linear and Multilinear Algebra*, 43, 137–150.

Puystjens, R., & Hartwig, R. E. (2010). The (2, 2, 0) group inverse problem. *Appl. Math. Comput*, 217, 516-520.

Rajesh Kannan, M., & Bapat, R. B. (2014). Generalized principal pivot transform. *Linear Algebra* and its Applications, 454, 49-56.

Wei, Y., & Diao, H., (2005). On group inverse of singular Toeplitz matrices. *Linear Algebra and its Applications*, 399, 109–123.