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Abstract 
The machine layout design (MLD) problem usually arises when a manufacturing company aimed to expand their production 

capacity and/or decrease the handling distances of materials or parts flow through a predefined sequence of machines for manufacturing 
a product. The problem is known to be Non-deterministic Polynomial (NP) hard, which is usually solved by metaheuristics such as 
Simulated Annealing (SA) and Tabu Search (TS). This paper presents the application of SA and TS for minimising the material 
handling distance associated with the layout required for manufacturing process of multiple products. A computer based machine layout 
designed tool was developed and tested using five datasets adopted from literature. The analysis on the computational results obtained 
from numerical experiments indicated that the average best so far solutions obtained from SA are marginally better than TS but the 
average execution times taken by TS were at least 50% faster than SA. The convergences of best so far solutions during TS iteration 
were quicker than those obtained from SA especially for small- and medium-size problems. 
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INTRODUCTION 

Manufacturing companies generally are being aware 
of an uncertainty issue on the changes of customers’ 
demand. In order to remain competitive, production 
system should therefore be flexible in order to cope 
with the demand changes and technological innovations. 
Considering on the trade-off between product quantity 
and diversity, an efficient machine layout design with 
low material handl ing distance required for 
manufacturing various products in the same shop floor 
is one of the crucial aspects. This issue has a significant 
impact upon manufacturing costs, work in process, lead 
times, productivity, material handling and transportation. 
Up to 50% of the total operating expenses can be 
reduced by adopting a good facility layout (Tompkins 
et al., 1996). The machine layout design (MLD) 
problem can be viewed as a generalisation of the 
quadratic assignment problem and therefore belong to 
the class of Non-deterministic Polynomial (NP) hard 
problem (Drira et al., 2007), which means that the 
computational time required by the conventional 
optimisation algorithms to solve a very large problem 
is expensively resource consuming and reasonably 
impractical. Therefore, alternative nature-inspired 
optimisation techniques called metaheuristics are 
rapidly growing and being applied to solve very large 
NP hard problems. 

There have been a number of research works 

focusing on designing machine or facility layout using 
various metaheuristics such as Ant Algorithm 
(Solimanpur et al, 2005), Artificial Bee Colony 
(Soimart & Pongcharoen, 2011), Differential Evolution 
Algorithm (Nearchou, 2006), Genetic Algorithms 
(Ariyawong, 2007; Ficko et al., 2004; Cheng & Gen, 
1998), Particle Swarm Optimisation (Rezazadeh et 
al., 2009; Kamkhad, 2008), Rank-based Ant System 
(Leechai et al., 2009), Shuffled Frog Leaping 
Algorithm (Iamtan & Pongcharoen, 2009), Simulated 
Annealing (Dong et al., 2009; McKendall et al., 
2006) and Tabu Search (Scholz et al., 2009). 

This paper presents the development of optimisation 
program, in which two classical metaheuristics called 
Tabu Search and Simulated Annealing with four types 
of cooling schemes were embedded for minimising 
material (and part) handling distance associated with 
machine layout required for manufacturing various 
products. The machines considered in this work were 
non-identical, non-rotatable and rectangular shapes 
with predefined sizes. The optimisation program was 
computationally experimented using tested five 
benchmarking datasets adopted from literature. Finally, 
SA and TS performances were comparatively studied 
based on the quality and the convergence of the best so 
far solutions obtained and the computational time 
required. 

The remaining sections in this paper are organised 
as follows. Section 2 presents the machine layout design
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(MLD) problem and its assumptions. Simulated
Annealing and Tabu Search including its pseudo codes
are described in section 3 and 4, respectively. Section
5 presents the computational experiments. Finally, the
conclusions are drawn in section 6.

MACHINE LAYOUT DESIGN (MLD)
PROBLEM

In this work, the design task on machine layout
problem involves with the process of arranging non-
identical rectangular machines on the specified area of
shop floor in such the way that the material handling

distance totally required for manufacturing various
products, each of which performs on different routes of
a predefined machine sequence, is minimised. Figure
1 illustrates an example of a multiple row layout
problem, in which there are 14 heterogeneous-size
machines to be arranged into a limited manufacturing
shop floor area. Machines are sequentially placed one
by one in the first row (R1) by considering a specified
aisle gap (G) between machines and the wall. Once
the remaining space at the end of the row is not enough,
the next machine (M3) is therefore placed on the second
row (R2).

The measure of performance was to minimise the
total material handling distance required for
manufacturing products, each of which has a different
route on machine sequence as shown in the equation
(1).
Minimise total distance ∑∑
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Where the parameter M is the amount of machines
to be arranged, the index i and j denote the machine
index (i and j = 1, 2, 3, …, M); the f

ij
  is the frequency

of materials or parts flow from machine i to machine j;
and the parameter D

ij
 is the travelling distance between

machine i and j. It should be noted that the D
ij
 is quite

straight forward when both machine i and j are in the
same row. If both machines are in different rows, the
parts may be moved from machine i to machine j parallel
with the left or right wall. For example in figure 1, if a

Fig. 1 Example of machine layout design and material handling path.
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part is moved from machine M10 to M14, the moving
path can be either left or right direction as denoted
with line (1) or (2) respectively. In this work, the
shorter route (for instant, the right direction or line no.
1) is taken in account for measure of performance.

There have been a variety of MLD problems. The
classification of the MLD problems depends on the
criterion used such as manufacturing systems, layout
configurations, devices, layout evaluations, data types,
objectives/performance measures and resolution
approaches (Tompkins et al., 1996; Vitayasak, 2010).
Considering the manufacturing systems as a factor for
classification, the MLD problems can be categorised
as fixed layout, process layout, product layout and
cellular layout. Layout configurations can be classified
as single row (e.g. linear layout, semi circular layout
and U-shape layout) or multiple rows, loop layout,
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open-field layout and multiple floor layout. Material
handling devices can be conveyor, automated guided
vehicle, robot and elevator. The facility (e.g. machines
and shop floor area) shapes can also be classified as
regular and irregular shapes.

In this work, the following assumptions were made
in order to simplify and formulate the problem: i) the
size of the shop floor area must be greater than the
space required for arranging the predefined machines;
ii) the distance between the heterogeneous rectangular
machines is determined from the machines’ centroid;
iii) machines are arranged in rows aligned with the
x-coordinate and each row is aligned along a constant
y-coordinate value; iv) the material handling devices
must move in a straight line; v) the processing time
and the moving time are not taken into consideration;
and vi) machine cannot be oriented and the height of
each machine is not taken into consideration.

SIMULATED ANNEALING (SA) ALGORITHM

Simulated annealing (SA) is a random search
optimisation technique inspired by the annealing of
metals proposed by Kirkpatrick et al. (Kirkpatrick et
al., 1983), who was inspired by the physical annealing
of solid metal. In the basic concept of annealing, a
metal is first heated to a high temperature and then
cooled down with a slow cooling rate into the room
temperature or ground state. If the initial temperature
is not high enough or if the temperature is decreased
rapidly, the solid at the ground state will have many
defects or imperfections. The most important
components of the SA are the probability of acceptance
and the annealing schedule. The probability of
acceptance is defined as the probability of accepting a
non-improving solution as the current solution. This is
determined based on the following probability (Dong
et al., 2009):

temperatures (T
max

 or T
1
) are determined using equation

(3). Three cooling schemes including Geometric
(Kirkpatrick et al., 1983), Lundy & Mees (Lundy &
Mees, 1986) and Linear (Menon & Gupta, 2004)
considered in this work were expressed in the equation
(4), (5) and (6) respectively. Moreover, we have
proposed a modified Geometric cooling scheme (see
more details in Wangta & Pongcharoen, 2010) as
shown in the equation (7). The values of the
temperature decrement factors                were
determined with equations (8), (9), (10) and (11)
where k is the iteration index (k = 1, 2, 3, …, n), n is
the number of iterations, both T
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or T
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 are the final temperatures.
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where P is the probability of accepting the neighbour
as a new solution,T

c
 is the current temperature and

represents the difference of total distances associated
with the neighbour solution and the current solution.
3.1 Cooling Schemes

The ability of the SA algorithm to provide a good
solution of an optimisation problem strongly depends
on the applied cooling scheme. It is important to use a
relatively slow cooling scheme, in order to avoid
premature convergence in local minima. The initial
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3.2 Pseudo code of SA algorithm for machine layout
design
Step 1: Upload problem data
Step 2: Setting parameters; n, T

max
, T

min
, L

max
 (number

of inner loops), neighbour search operator, and cooling
schemes.
Step 3: Randomly sequence the machine to create an
initial solution (S

i
) and calculate the distance (E

i
)

associated with S
i
.

Step 4: Adopt a neighbour search operator (two
machines random swap) S

j
 of S

i
 and calculate its distance

E
j
.

Step 5: If E
j
  E

i
, then go to step 6, otherwise go tod
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step 7 
Step 6: Assign S j = S i and E j = E i , then go to step 9 
Step 7: Compare a uniform random variable (U) with 
probability (P), IF (P > U) then go to step 6 else go to 
step 8 
Step 8: Reject S j and E j , Assign S i = S i and E i = E i , 
then go to step 9 
Step 9: Assign L = L + 1 and check inner loop, IF (L 
< L max ) then go to step 4, otherwise go to step 10 
Step 10: Decrease temperature by cooling scheme is 
assigned and then go to step 11 
Step 11: Check current temperature. IF (T c T min ) then 
go to step 12, else go to step 4 
Step 12: Choose the best so far solution in overall 
solutions and stop criterion. 

TABU SEARCH (TS) ALGORITHM 

Tabu Search (TS) introduced by Glover (1989) is 
a well-known metaheuristic with a hill climbing 
concept. Tabu search process can avoid the local 
optimum and simultaneously continue its exploration 
using major components including tabu list and 
aspiration criteria. Tabu list is aimed to prevent a 
duplicated search cycle of visited solutions. Tabu list 
therefore keeps record of the solutions that has been 
previously considered. The size of the tabu list therefore 
plays an important role during search process. In this 
work, tabu list size (LS T ) was assumed to be associated 
with the problem size and was therefore equal to the 
number of machines (MC) to be arranged. Thus, when 
generating the neighbourhood candidates with size 
(LS c ), the solutions appeared in the tabu list will not 
be considered. If tabu list is full, the First In First Out 
(FIFO) rule is adopted. This means that the oldest 
solution recorded in the tabu list is removed whilst the 
new solution is inserted in the list. The role of aspiration 
criteria is to provide a flexibility to choose good moves 
by allowing the tabu move (candidates solution appeared 
in the tabu list) to be overridden if the aspiration level 
is satisfied (Glover, 1989). 

4.1 Pseudo code of TS algorithm for machine layout 
design 
Step 1: Upload problem data. 
Step 2: Setting parameters; LS C , LS T , I max (number of 
iterations); neighbour search operator. 
Step 3: Generate a random initial layout (x) and 
calculate its distance c(x). Update best solution and 
aspiration (A) values. 

Step 4: Generating the neighbourhood candidates S(x) 
of x using two machine random swap and calculate its 
distance c(x). 
Step 5: If some candidates in S(x)   A, then go to step 
6, else go to step 8. 
Step 6: Choose the best solution in S(x) then set the 
best solution is x where x S(x). 
Step 7: If x tabu list, then go to step 12, else go to 
step 11. 
Step 8: Remove the candidates in S(x) that appear in 
tabu list. 
Step 9: If S(x) are removed until empty, then go to 
step 18, else go to step 10. 
Step 10: Choose the best solution in S(x) then set the 
best solution is x where x   S(x). Then go to step 11. 
Step 11: Update x in tabu list. 
Step 12: Update A = c(x). 
Step 13: If c(x) c(x*), then go to step 14, else go to 
step 15. 
Step 14: Let x* = x, then go to step 16. 
Step 15: Let x = x. 
Step 16: If I < I max , then go to step 17, else go to step 
18 
Step 17: Set I = I + 1 then return to step 4. 
Step 18: Choose x* was last improved and stop criterion. 

COMPUTATIONAL EXPERIMENTS 

The computation study in this work was based on 
five benchmarking datasets of the machine layout design 
problem adopted from (Nearchou, 2006; Cheng & Gen, 
1998), in which the sequence of machines required 
for each part was predefined. The first problem, which 
is relatively small, was based on 3 products to be 
performed on 10 machines (P3M10). The second 
problem involved 5 products to be performed on 20 
machines (P5M20). The third and forth problems 
considered 9 and 10 products to be performed on 15 
and 30 machines, respectively (P9M15 and 
P10M30). Finally, the last problem involved 27 
products to be processed on 30 machines (P27M30). 
Due to the limitation of detailed datasets available in 
previous research, the dimension of machines has not 
been provided. The width and length of each machine 
was therefore estimated. 

The SA parameters used in this experiment were 
based on previous study (Wangta & Pongcharoen, 
2010). For each problem size, the number of iterations 
(n), the final temperature (T min ) and the number of 
inner loops (L max ) were set at 100, 0.001 and 25, 
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∈ 
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respectively. Two-machine random swap was used for 
neighbour search. Four cooling schemes including 
Geometric (Geo), Lundy & Mees (L&M) and Linear 
(Linear) and modified Geometric (Mo Geo) were 
adopted. The initial temperatures (T max ) for each 
problem size including P3M10, P5M20, P9M15, 
P10M30 and P27M30 were set at 126, 352, 313, 
731 and 1,311 respectively. These values were 
determined using equation (3). 

The TS parameters used in this experiment were 
determined as follows. The candidate list size (LS C ) 
and the number of iterations (I max ) were set at 25 and 
100, respectively. The combination of both values 
(2,500 solutions) determines the total exploration 
search of the TS algorithm, which was equaled to SA. 
The tabu list size (LS T ) was varied and depended on 
the problem sizes. In this work, the LS T is equal to the 
number of machine (MC) to be arranged. Again, 
two-machine random swap was used for neighbour 

search operator. A one metre gap between machines 
and the wall was assumed in this work. These 
parameters can be adjusted via graphic user interface 
provided in the developed program. 

The developed program for designing the machine 
layout using the TS and SA was written in modular 
style using the Tool Command Language and Tool Kit 
(Tcl/Tk) programming language (Ousterhout, 1994). 
A computational experiment was conducted on personal 
computer with Intel Core 2 Duo 2.8 GHz CPU and 1 
GB DDR2 RAM. The computational runs using TS 
and SA with four types of cooling scheme for each 
problem size were repeated 30 times using different 
random seed numbers. The experimental results obtained 
using the proposed methods for each problem sizes were 
summarised in terms of the best solution found (BSF), 
mean, standard deviation (SD) and the execution time 
(see Table 1). 

Table 1 Results on the quality of average solution obtained and average execution time 
Best so far results (30 runs) 

Prob. Algorithm Min 
(m.) 

Max 
(m.) 

Mean 
(m.) 

S.D. 
(m.) 

Time 
(s.) 

SA (Geo) 186.975 204.725 188.465 3.783 29 
SA (L&M) 186.975 226.225 196.793 10.519 29 
SA (Linear) 186.975 203.425 191.845 4.802 30 
SA (Mo Geo) 186.975 203.425 190.568 5.503 29 

P3M10 

TS 186.975 209.325 192.293 7.040 13 
SA (Geo) 1211.450 1346.550 1274.582 40.866 97 
SA (L&M) 1202.250 1382.200 1280.812 49.798 97 
SA (Linear) 1300.100 1497.150 1379.568 53.230 103 
SA (Mo Geo) 1205.200 1343.850 1261.262 34.909 100 

P5M20 

TS 1198.150 1357.600 1275.370 36.417 47 
SA (Geo) 1336.250 1401.350 1365.177 20.145 100 
SA (L&M) 1336.250 1441.350 1379.650 27.987 100 
SA (Linear) 1351.150 1463.150 1406.537 29.647 103 
SA (Mo Geo) 1336.250 1434.950 1372.297 30.140 101 

P9M15 

TS 1336.250 1406.950 1368.230 18.502 45 
SA (Geo) 4257.925 4616.275 4421.452 93.523 240 
SA (L&M) 4205.125 4618.175 4422.965 98.069 240 
SA (Linear) 4509.125 5134.025 4805.340 141.809 240 
SA (Mo Geo) 4279.125 4588.725 4408.042 81.221 240 

P10M30 

TS 4302.830 4676.430 4466.420 80.419 116 
SA (Geo) 8254.050 8923.650 8593.412 182.091 432 
SA (L&M) 8295.300 9220.600 8782.632 235.194 435 
SA (Linear) 8854.100 9912.100 9419.668 271.801 450 
SA (Mo Geo) 8233.200 9044.700 8618.540 164.163 435 

P27M30 

TS 8324.750 9155.350 8693.190 189.593 181
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From Table 1, it can be seen that the performance 
of TS and SA with four cooling schemes were marginally 
different in terms of the minimum, maximum and 
average of the best so far solutions found for all problem 
sizes. However, the average execution times taken by 
TS were significantly quicker than SA up to 200%. In 
order to investigate the convergences of the best so far 
solutions, the computational runs that yielded the best 
so far (minimum) results obtained from the proposed 
algorithms were representatively taken from each 
problem dataset and plotted against the loop of 
generations as shown in Figure 2-6. The stopping 
criterion for each run was depended on the convergence 
of the best so far solution. 

Fig. 2 Convergence plots of the SA and TS on P3M10. 

Fig. 3 Convergence plots of the SA and TS on P5M20. 

Fig. 4 Convergence plots of the SA and TS on P9M15. 

Fig. 5 Convergence plots of the SA and TS on P10M30. 

Fig. 6 Convergence plots of the SA and TS on P27M30.
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From Figure 3, the best so far solution was found 
by TS at the 7 th iteration while SA was found at 52 th 

iteration. Figure 4, the best so far solution was found 
by TS at the 58 th iteration while SA was found at 76 th 

iteration. Figure 5, the best so far solution was found 
by TS at the 52 th iteration while SA was found at 51 th 

iteration. Figure 6, the best so far solution was found 
by TS at the 92 th iteration while SA was found at 166 th 

iteration. Figure 7, the best so far solution was found 
by TS at the 50 th iteration while SA was found at 77 th 

iteration. It can be seen that the convergences of the 
results obtained from the TS were dramatically quicker 
than the SA especially for small- and medium-size 
problems. However, SA yielded better results than TS 
for large-size problem. 

CONCLUSIONS 

This paper presents the application of the Tabu 
Search (TS) and Simulated Annealing (SA) algorithms 
for solving non-rotatable non-identical rectangular 
machine layout design (MLD) problem in multiple row 
environment. Four cooling schemes were considered and 
embedded in the SA. The proposed algorithms were 
aimed to minimise the material handling distance 
associated with the single floor layout required for 
manufacturing process of multiple products. The 
automatic layout designed program was written in 
modular style and computationally tested using five 
benchmarking datasets of the MLD problem adopted 
from literature. The analysis on the experimental results 
obtained from the proposed methods indicated the 
performance of TS and SA with four cooling schemes 
were marginally different in terms of the minimum, 
maximum and average of the best so far solutions found 
for all problem sizes. However, the convergence of the 
best so far solutions during iterations using TS was 
quicker than SA for small- and medium-size problems 
but SA yielded better solutions than TS for large-size 
problem. However, the average execution time taken 
by TS was less than SA by half. 
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