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Abstract 
In this research, the radiation and neutron shielding properties of some Ni-base superalloys of Inconel 600, 601, 617, 625, 

625LCF, 686, 690, and 693, were estimated.  The radiation shielding effectiveness of the superalloys was estimated by 
determining the mass attenuation coefficient (m), effective atomic number (Zeff), effective electron density (Nel), half value layer 
(HVL) and mean free path (MFP) at photon energy ranging 1 keV-100 GeV using the WinXCom computer software program. 
Exposure and energy absorption buildup factors (EBF and EABF) were computed at energy levels ranging from 15 keV-15 MeV 
up to 40 mfp deep penetration. Neutron shielding was computed by partial density. The results showed that Inconel 686 superalloy 
was excellent radiation shielding. This study indicates that Inconel 686 superalloy can be developed as a radiation shielding medium. 
While Inconel 600 had the highest fast neutron removal cross sections (R value) , meaning that Inconel 600 is better neutron 
shielding than the other Inconel samples.  
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Introduction 

The objective of this study of the properties of radiation shielding materials was to enhance the protection 
against dangerous radiation for workers and the environment. The materials for radiation shielding should consist 
of elements with high density and atomic number (Kavaz, Tekin, Kilic, & Susoy, 2020; Şakar, Özpolat, Alım, 
Sayyed, & Kurudirek, 2020; Issa, Rashad, Zakaly, Tekin, & Abouhaswa, 2020) .  Materials with amorphous 
structures, such as alloys, are widely used in many sectors because of their magnetic, mechanical, and chemical 
properties, making them of significant interest to researchers ( Manjunatha, Seenappa, Chandrika, Sridhar, & 
Hanumantharayappa, 2018). Particularly, alloys containing heavy metals such as Ni, Cr, Fe, and Cu demonstrate 
increased radiation shielding efficiency (Sadawy & Shazly, 2019). 

Ni-based superalloys (NBSA) are favored for use in several fields such as chemical manufacturing, aerospace 
and nuclear industries because of their superior overall performance in high- temperature environments ( Sun, 
Chen, Li, & Ren, 2020). Inconel, a member of the NBSA series, is utilized in a variety of applications due to 
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Introduction

The objective of this study of the properties of radiation shielding materials was to enhance the protection
against dangerous radiation for workers and the environment. The materials for radiation shielding should consist
of elements with high density and atomic number (Kavaz, Tekin, Kilic, & Susoy, 2020; Şakar, Özpolat, Alım, 
Sayyed, & Kurudirek, 2020; Issa, Rashad, Zakaly, Tekin, & Abouhaswa, 2020) .  Materials with amorphous 
structures, such as alloys, are widely used in many sectors because of their magnetic, mechanical, and chemical 
properties, making them of significant interest to researchers ( Manjunatha, Seenappa, Chandrika, Sridhar, & 
Hanumantharayappa, 2018). Particularly, alloys containing heavy metals such as Ni, Cr, Fe, and Cu demonstrate
increased radiation shielding efficiency (Sadawy & Shazly, 2019).

Ni-based superalloys (NBSA) are favored for use in several fields such as chemical manufacturing, aerospace
and nuclear industries because of their superior overall performance in high- temperature environments ( Sun, 
Chen, Li, & Ren, 2020). Inconel, a member of the NBSA series, is utilized in a variety of applications due to 

its high strength, weldability, formability, higher corrosion resistance, lack of post- weld heat treatment, and 
resistance to stress corrosion cracking (SCC) (Sriwongsa et al., 2022). 

The effectiveness of Ni-base superalloys for radiation and neutron shielding of Inconel 600, 601, 617, 
625, 625LCF, 686, 690 and 693 superalloys was explored in this study. Radiation shielding parameters: mass 
attenuation coefficient (m), effective atomic number (Zeff), effective electron density (Nel), half value layer 
(HVL) and mean free path (MFP) were estimated using the WinXCom software program at energies ranging 
from 1 keV to 100 GeV while buildup factors (BFs) were simulated using the G-P fitting method at energies 
ranging from 0.015 MeV to 15 MeV at deep penetration 1-40 mfp. Fast neutron removal cross sections (R) 
were calculated by the partial density method at energies in the range of 2-12 MeV. The results of this work 
can be applied to and developed for other materials. 

Methods and Materials 

Inconel samples 
 The radiation shielding properties of Inconel samples were simulated and explained using the WinXcom 
program (Alotaibi et al., 2021), which computed m, Zeff, Nel, MFP and HVL. BFs were calculated using the 
geometrical progression (G–P)  fitting method (Levet & Özdemir, 2017; Sayyed & Elhouichet, 2017) , and 
R was simulated using the partial density method (Abouhaswa, Rammah, Sayyed, & Tekin, 2019). All these 
values were identified from many previous articles (Singh & Badiger, 2014; Sriwongsa et al., 2020; ALMisned 
et al., 2021; Sriwongsa et al., 2022). The chemical compositions of the Inconel samples are exhibited in Table 1. 

Table 1  Chemical composition for Inconel samples (wt%) (Alloy Handbook, 2022) 
Inconel code Ni C Si Mn Cu Fe S Nb W 

600 S1 
72.000 0.150 0.500 1.000 0.500 6.000 0.015 - - 
Co Cr Al Ti B Mo P N 
5.835 14.000 - - - - - - 

Inconel code Ni C Si Mn Cu Fe S Nb W 

601 S2 
58.000 0.100 0.500 1.000 1.000 17.385 0.015 - - 
Co Cr Al Ti B Mo P N 
- 21.000 1.000 - - - - - 

Inconel code Ni C Si Mn Cu Fe S Nb W 

617 S3 
55.029 0.050 1.000 1.000 0.500 3.000 0.015 - - 
Co Cr Al Ti B Mo P N 
10.000 20.000 0.800 0.600 0.006 8.000 - - 

Inconel code Ni C Si Mn Cu Fe S Nb W 

625 S4 
58.000 0.100 0.500 0.500 - 5.000 0.015 3.150 - 
Co Cr Al Ti B Mo P N 
3.920 20.000 0.400 0.400 - 8.000 0.015 - 

Inconel code Ni C Si Mn Cu Fe S Nb W 

625LCF S5 
58.000 0.030 0.150 0.500 - 5.000 0.015 3.150 - 
Co Cr Al Ti B Mo P N 
4.320 20.000 0.400 0.400 - 8.000 0.015 0.020 

Inconel code Ni C Si Mn Cu Fe S Nb W 

686 S6 
61.080 0.010 0.080 0.750 - 1.000 0.020 - 3.000
Co Cr Al Ti B Mo P N 
- 19.000 - 0.020 - 15.000 0.040 -
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Table 1  (Cont.) 
Inconel code Ni C Si Mn Cu Fe S Nb W 

690 S7 
58.000 0.050 0.500 0.500 0.500 7.000 0.015 - - 
Co Cr Al Ti B Mo P N  
6.435 27.000 - - - - - -  

Inconel code Ni C Si Mn Cu Fe S Nb W 

693 S8 
64.335 0.150 0.500 1.000 0.500 2.500 0.015 0.500 - 
Co Cr Al Ti B Mo P N  
- 27.000 2.500 1.000 - - - -  

 
Results and Discussion 

 
1.  Mass attenuation coefficient (m) , effective atomic number ( Zeff) , effective electron density ( Nel) , half 
value layer (HVL) and mean free path (MFP) 

The µm parameter for Inconel samples with energy is shown in Figure 1 which is a graph of variables for all 
Inconel samples. The µm values were maximum in the low energy ranges and rapidly declined in the intermediate 
energy ranges before increasing almost constant in the high energy range.  The fundamental interactions of 
radiation with matters are the photoelectric effect (PE) as  E–1, the Compton scattering (CS) as  E–1, and 
pair production (PP) as  at Log E. The discontinuities shown in the graphs at low energy ranges were due to 
the M– , L–  and K– absorption edges of each element in the Inconel samples ( Ravangvong et al. , 2022)  as 
exhibited in Table 2. Moreover, µm of sample S6 had the highest value because this sample contained the highest 
amount of tungsten (W). 

 
Table 2 Absorption edges of each element in Inconel samples 

Element Absorption edges ( 10–3 MeV) 
M5 M4 M3 M2 M1 L3 L2 L1 K 

W 1.809  1.872  2.281  2.575  2.820  10.21  11.54  12.10  69.53  
Mo      2.520  2.625  2.865  20.00  
Nb      2.370  2.465  2.698  1.899  
Ni        1.008  8.333  
Cu        1.096  8.979  
Si         1.839  
Mn         6.539  
Fe         7.112  
S         2.472  
Co         7.709  
Cr         5.989  
Al         1.560  
Ti         4.966  
P         2.145  
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Figure 1 The µm of Inconel samples VS energy 

 
The Zeff and Nel of the Inconel samples are shown in Figures 2 and 3. As shown, both the  Zeff and Nel have the 
same characteristics and these parameters show a high value which indicates excellent radiation shielding. Both 
graphs show PE, CS, and PE varying with Z4-5, Z, and Z2, respectively ( Singh et al. , 2014; Singh, Kaur, 
Sharma, & Singh, 2018; Kaur, Sharma, & Singh, 2019; Boukhris et al. , 2020).  Due to the absorption edge 
of elements in the Inconel samples, both results indicate magnitudes. In addition, sample S6 had the highest Zeff 
and Nel values indicating that this sample had superior radiation shielding. 
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Figure 2 The Zeff of Inconel samples VS energy   
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Figure 3 The Nel of Inconel samples VS energy 

 
Normally, the radiation shielding medium should have low HVL and MFP values which increases the probability 
of radiation interaction with the shielding medium. Figures 4 and 5 show that sample S6 had low HVL and MFP 
values, which indicated that sample S6 is an excellent radiation-shielding medium (Issa et al., 2020). 
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Figure 4 The HVL of Inconel samples VS energy 
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Figure 5 The MFP of Inconel samples VS energy 
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Figure 5 The MFP of Inconel samples VS energy 

 

 

 

2. Buildup factors (BFs) 
 BFs are parameters used when discussing the absorption of radiation in material and air which are comprised 
of the energy absorption buildup factor (EABF) and the exposure buildup factor  (EBF). Figure 7 (a-h) and 8 
(a-h) show the simulated EABF and EBF values up to 40 mfp at an energy ranging of 0.015–15 MeV. Low 
energy ranges have low BFs because photons are absorbed since PE is the main mechanism of superiority, and 
the magnitudes of these ranges are due to the absorption edge (K–edge) of each element, as previously explained. 
At intermediate energy ranges, BFs values increased because of the photons' multiple scattering and the 
accumulation of photons, with CS as the main process. At high energy ranges, the BFs values are low due to PP 
being the main process by which photons absorb energy (Singh, Badiger, Chanthima, & Kaewkhao, 2014; Issa, 
Sayyed, Zaid, & Matori, 2017) .  Sample S6 showed the lowest value and the highest value of Zeqas shown in 
Figure 6.  Figures 9 and 10 illustrate the increase in BFs values with deep penetration for all Inconel samples, 
at specific energy levels (0.015, 0.15, 1.5, and 15 MeV). EABF and EBF values are essentially consistent at 
0.015 MeV (Figure 9 and 10a). EABF and EBF values are independent of chemical composition at energies 
of 0.15 and 1.5 MeV ( Figure 9 and 10b, c) , and subsequently EABF and EBF values according to Zeq at 
energies of 15 MeV ( Figure 9 and 10d) .  These results indicated that S6 is a superior radiation- shielding 
material. 
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Figure 6 The Zeq of Inconel samples VS energy 
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Figure 7 (a-h). EABF of samples VS energy at 1–40 mfp 
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Figure 8 (a-h). EBF of samples VS energy at 1–40 mfp 
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Figure 9 (a-d). EABF for Inconel samples up to 40 mfp at specific energies 
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Figure 10 (a-d) EBF for Inconel samples up to 40 mfp at specific energies 
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Figure 9 (a-d). EABF for Inconel samples up to 40 mfp at specific energies 

10 20 30 40
1.002

1.004

1.006

1.008

1.010
0.015 MeV

E
B

F

Deep penetration

 S1  S2
 S3  S4
 S5  S6
 S7  S8

(a)

10 20 30 40

2

4

6

8

10

12
0.15 MeV

EB
F

Deep penetration

 S1  S2
 S3  S4
 S5  S6
 S7  S8

(b)

 

10 20 30 40

15

30

45

60

75
1.5 MeV

E
B

F

Deep penetration

 S1  S2
 S3  S4
 S5  S6
 S7  S8

(c)

10 20 30 40

0

50

100

150

200

250
15 MeV

EB
F

Deep penetration

 S1  S2
 S3  S4
 S5  S6
 S7  S8

(d)

 
Figure 10 (a-d) EBF for Inconel samples up to 40 mfp at specific energies 

 

 

3. Fast neutron removal cross sections (R) 
 Figure 11 shows R for Inconel samples. It is generally known that R decreases when the content of high-
Z elements increases.  The Inconel sample S1 has the highest R value, indicating that it has a higher neutron 
shielding than other Inconel samples. 

This work estimated the radiation and neutron shielding properties of some Ni- base superalloys of Inconel 
600, 601, 617, 625, 625LCF, 686, 690 and 693.  The m, Zeff, Nel, HVL and MFP were determined at 
energy levels from 1 keV to 100 GeV.  BFs were simulated at energy levels from 0.015 to 15MeV at deep 
penetration of 1–40 mfp.  The R was determined by the partial density method.  The results showed that PE, 
CS and PP are the main processes at low, intermediate and high energy ranges, respectively. In addition, the m, 
Zeff, Nel, HVL and MFP values are dependent on the energy level and Inconel 686, sample S6, showed the 
highest value while the lowest HVL and MFP values also included BFs. These results indicate that Inconel 686 
is the best radiation shielding medium. The determination of R of Inconel samples at an energy ranging from 2 
to 12 MeV, showed that R of Inconel 600 has the highest value.  It means that Inconel 600 is better neutron 
shielding than the other Inconel samples. And this work is a simulation that can be developed with other materials. 
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Figure 11 R of Inconel samples 

 
Conclusion and Suggestions 

 
This work estimated the radiation and neutron shielding properties of some Ni-based superalloys of Inconel 

600, 601, 617, 625, 625LCF, 686, 690, and 693.  The m, Zeff, Nel, HVL, and MFP were determined at 
different energy from 1 keV to 100 GeV.  As well, BFs were simulated at energy from 0.015 to 15MeV at 
deep penetration 1–40 mfp. The R was determined by the partial density method. The results showed that PE 
is the main process at low energy ranges, CS at intermediate energy ranges, and PP is the main process at high 
energy ranges. In addition, the m, Zeff, Nel, HVL and MFP values are dependent on energy levels and Inconel 
686, sample S6 in our study, showed the highest value while the lowest HVL and MFP values also included 
BFs.  These results indicated that Inconel 686 is the best radiation shielding medium.  The determination of R 
of Inconel samples at an energy ranging from 2 to 12 MeV, it’s exhibited that R of Inconel 600 has the highest 
value. It means that Inconel 600 is better neutron shielding than the other Inconel samples. 
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