

Estimation and Comprehensive for Radiation and Neutron Shielding of Ni-base

Superalloys: Inconel 600, 601, 617, 625, 625LCF, 686, 690 and 693

Sunantasak Ravangvong¹, Punsak Glumglomchit²*, Pitchaya Parnitvatthana²,

Nuttida Nimsean², Thantitcha Putthachatraksakul², Kittisak Sriwongsa^{3,4},

Chumphon Khobkham⁵ and Wanna Wattana⁶

¹Division of Science and Technology, Faculty of Science and Technology, Phetchaburi Rajabhat University, Phetchaburi, 76000, Thailand

²Huahinvitthayalai School, Hua-Hin, Prachuap Khiri Khan, 77110, Thailand

³Faculty of Education, Silpakorn University, Nakhon Pathom, 73000, Thailand

⁴The demonstration school of Silpakorn University, Nakhon Pathom, 73000, Thailand

⁵Faculty of Engineering, Thonburi University, Bangkok, 10160 Thailand

⁶Division of Chemistry, Faculty of Science and Technology, Phetchaburi Rajabhat University, Phetchaburi, 76000, Thailand

* Corresponding author. E-mail address: punsakk@gmail.com

Received: 15 May 2022; Revised: 3 August 2023; Accepted: 19 September 2023; Available online: 16 November 2023

Abstract

In this research, the radiation and neutron shielding properties of some Ni-base superalloys of Inconel 600, 601, 617, 625, 625LCF, 686, 690, and 693, were estimated. The radiation shielding effectiveness of the superalloys was estimated by determining the mass attenuation coefficient (μ_m), effective atomic number (Z_{eff}), effective electron density (N_{el}), half value layer (HVL) and mean free path (MFP) at photon energy ranging 1 keV-100 GeV using the WinXCom computer software program. Exposure and energy absorption buildup factors (EBF and EABF) were computed at energy levels ranging from 15 keV-15 MeV up to 40 mfp deep penetration. Neutron shielding was computed by partial density. The results showed that Inconel 686 superalloy was excellent radiation shielding. This study indicates that Inconel 686 superalloy can be developed as a radiation shielding medium. While Inconel 600 had the highest fast neutron removal cross sections (Σ_R value), meaning that Inconel 600 is better neutron shielding than the other Inconel samples.

Keywords: Ni-base superalloys, Gamma shielding, Neutron shielding

Introduction

The objective of this study of the properties of radiation shielding materials was to enhance the protection against dangerous radiation for workers and the environment. The materials for radiation shielding should consist of elements with high density and atomic number (Kavaz, Tekin, Kilic, & Susoy, 2020; Şakar, Özpolat, Alım, Sayyed, & Kurudirek, 2020; Issa, Rashad, Zakaly, Tekin, & Abouhaswa, 2020). Materials with amorphous structures, such as alloys, are widely used in many sectors because of their magnetic, mechanical, and chemical properties, making them of significant interest to researchers (Manjunatha, Seenappa, Chandrika, Sridhar, & Hanumantharayappa, 2018). Particularly, alloys containing heavy metals such as Ni, Cr, Fe, and Cu demonstrate increased radiation shielding efficiency (Sadawy & Shazly, 2019).

Ni-based superalloys (NBSA) are favored for use in several fields such as chemical manufacturing, aerospace and nuclear industries because of their superior overall performance in high-temperature environments (Sun, Chen, Li, & Ren, 2020). Inconel, a member of the NBSA series, is utilized in a variety of applications due to

its high strength, weldability, formability, higher corrosion resistance, lack of post-weld heat treatment, and resistance to stress corrosion cracking (SCC) (Sriwongsa et al., 2022).

The effectiveness of Ni-base superalloys for radiation and neutron shielding of Inconel 600, 601, 617, 625, 625LCF, 686, 690 and 693 superalloys was explored in this study. Radiation shielding parameters: mass attenuation coefficient (μ_m), effective atomic number (Z_{eff}), effective electron density (N_{el}), half value layer (HVL) and mean free path (MFP) were estimated using the WinXCom software program at energies ranging from 1 keV to 100 GeV while buildup factors (BFs) were simulated using the G-P fitting method at energies ranging from 0.015 MeV to 15 MeV at deep penetration 1-40 mfp. Fast neutron removal cross sections (Σ_R) were calculated by the partial density method at energies in the range of 2-12 MeV. The results of this work can be applied to and developed for other materials.

Methods and Materials

Inconel samples

The radiation shielding properties of Inconel samples were simulated and explained using the WinXcom program (Alotaibi et al., 2021), which computed μ_m , Z_{eff} , N_{el} , MFP and HVL. BFs were calculated using the geometrical progression (G–P) fitting method (Levet & Özdemir, 2017; Sayyed & Elhouichet, 2017), and Σ_R was simulated using the partial density method (Abouhaswa, Rammah, Sayyed, & Tekin, 2019). All these values were identified from many previous articles (Singh & Badiger, 2014; Sriwongsa et al., 2020; ALMisned et al., 2021; Sriwongsa et al., 2022). The chemical compositions of the Inconel samples are exhibited in Table 1.

Inconel	code	Ni	С	Si	Mn	Cu	Fe	S	Nb	W
	2.85	72.000	0.150	0.500	1.000	0.500	6.000	0.015	7-1-1	
600	S1	Со	Cr	Al	Ti	В	Мо	Р	Ν	
		5.835	14.000	-	-	-			- /	
Inconel	code	Ni	С	Si	Mn	Cu	Fe	S	Nb	W
1.63		58.000	0.100	0.500	1.000	1.000	17.385	0.015		77
601	S2	Со	Cr	Al	Ti	В	Мо	Р	Ν	
$\sim \sim$		1.3	21.000	1.000	1-2	6 Y Y	1 - A	-	-71	
Inconel	code	Ni	С	Si	Mn	Cu	Fe	S	Nb	W
- 11 h.		55.029	0.050	1.000	1.000	0.500	3.000	0.015	1	11 -
617	S 3	Со	Cr	Al	Ti	В	Мо	Р	Ν	
		10.000	20.000	0.800	0.600	0.006	8.000		1	
Inconel	code	Ni	С	Si	Mn	Cu	Fe	S	Nb	W
		58.000	0.100	0.500	0.500		5.000	0.015	3.150	-
625	S4	Со	Cr	Al	Ti	В	Мо	Р	Ν	
		3.920	20.000	0.400	0.400	-	8.000	0.015	-	
Inconel	code	Ni	С	Si	Mn	Cu	Fe	S	Nb	W
		58.000	0.030	0.150	0.500	-	5.000	0.015	3.150	-
625LCF	S 5	Со	Cr	Al	Ti	В	Мо	Р	Ν	
		4.320	20.000	0.400	0.400	-	8.000	0.015	0.020	
Inconel	code	Ni	С	Si	Mn	Cu	Fe	S	Nb	W
		61.080	0.010	0.080	0.750	-	1.000	0.020	-	3.00
686	S6	Со	Cr	Al	Ti	В	Мо	Р	Ν	

 Table 1 Chemical composition for Inconel samples (wt%) (Alloy Handbook, 2022)

Inconel	code	Ni	С	Si	Mn	Cu	Fe	S	Nb	W
		58.000	0.050	0.500	0.500	0.500	7.000	0.015	-	-
690	S7	Co	Cr	Al	Ti	В	Мо	Р	Ν	
		6.435	27.000	-	-	-	-	-	-	
Inconel	code	Ni	С	Si	Mn	Cu	Fe	S	Nb	W
Inconel	code	Ni 64.335	C 0.150	Si 0.500	Mn 1.000	Cu 0.500	Fe 2.500	S 0.015	Nb 0.500	W _
Inconel 693	code S8	Ni 64.335 Co	C 0.150 Cr	Si 0.500 Al	Mn 1.000 Ti	Cu 0.500 B	Fe 2.500 Mo	S 0.015 P	Nb 0.500 N	W -

Table 1 (Cont.)

Results and Discussion

1. Mass attenuation coefficient (μ_m), effective atomic number (Z_{eff}), effective electron density (N_{el}), half value layer (HVL) and mean free path (MFP)

The μ_m parameter for Inconel samples with energy is shown in Figure 1 which is a graph of variables for all Inconel samples. The μ_m values were maximum in the low energy ranges and rapidly declined in the intermediate energy ranges before increasing almost constant in the high energy range. The fundamental interactions of radiation with matters are the photoelectric effect (PE) as αE^{-1} , the Compton scattering (CS) as $\alpha - E^{-1}$, and pair production (PP) as $\alpha \frac{1}{\alpha t}$ Log E. The discontinuities shown in the graphs at low energy ranges were due to the M-, L- and K- absorption edges of each element in the Inconel samples (Ravangvong et al., 2022) as exhibited in Table 2. Moreover, μ_m of sample S6 had the highest value because this sample contained the highest amount of tungsten (W).

Element	Absorption edges (X 10 ⁻³ MeV)											
	M5	M4	М3	M2	M1	L3	L2	L1	K			
W	1.809	1.872	2.281	2.575	2.820	10.21	11.54	12.10	69.53			
Мо	31.16	1				2.520	2.625	2.865	20.00			
Nb	22.2	9.				2.370	2.465	2.698	1.899			
Ni	216		200			1.5	2//	1.008	8.333			
Cu			12		Val	2	10	1.096	8.979			
Si					1 2	1000		1977	1.839			
Mn		1				-	1010		6.539			
Fe		· /		/ 11			- 07	11	7.112			
S		100	1		10				2.472			
Со							1	53	7.709			
Cr							_		5.989			
Al									1.560			
Ti									4.966			
Р									2.145			

Table 2 Absorption edges of each element in Inconel samples

Figure 1 The μ_m of Inconel samples VS energy

The Z_{eff} and N_{el} of the Inconel samples are shown in Figures 2 and 3. As shown, both the Z_{eff} and N_{el} have the same characteristics and these parameters show a high value which indicates excellent radiation shielding. Both graphs show PE, CS, and PE varying with Z^{4-5} , Z, and Z^2 , respectively (Singh et al., 2014; Singh, Kaur, Sharma, & Singh, 2018; Kaur, Sharma, & Singh, 2019; Boukhris et al., 2020). Due to the absorption edge of elements in the Inconel samples, both results indicate magnitudes. In addition, sample S6 had the highest Z_{eff} and N_{el} values indicating that this sample had superior radiation shielding.

Figure 3 The N_{el} of Inconel samples VS energy

Normally, the radiation shielding medium should have low HVL and MFP values which increases the probability of radiation interaction with the shielding medium. Figures 4 and 5 show that sample S6 had low HVL and MFP values, which indicated that sample S6 is an excellent radiation-shielding medium (Issa et al., 2020).

Figure 5 The MFP of Inconel samples VS energy

BFs are parameters used when discussing the absorption of radiation in material and air which are comprised of the energy absorption buildup factor (EABF) and the exposure buildup factor (EBF). Figure 7 (a-h) and 8 (a-h) show the simulated EABF and EBF values up to 40 mfp at an energy ranging of 0.015-15 MeV. Low energy ranges have low BFs because photons are absorbed since PE is the main mechanism of superiority, and the magnitudes of these ranges are due to the absorption edge (K-edge) of each element, as previously explained. At intermediate energy ranges, BFs values increased because of the photons' multiple scattering and the accumulation of photons, with CS as the main process. At high energy ranges, the BFs values are low due to PP being the main process by which photons absorb energy (Singh, Badiger, Chanthima, & Kaewkhao, 2014; Issa, Sayyed, Zaid, & Matori, 2017). Sample S6 showed the lowest value and the highest value of Z_{eq} as shown in Figure 6. Figures 9 and 10 illustrate the increase in BFs values with deep penetration for all Inconel samples, at specific energy levels (0.015, 0.15, 1.5, and 15 MeV). EABF and EBF values are essentially consistent at 0.015 MeV (Figure 9 and 10a). EABF and EBF values are independent of chemical composition at energies of 0.15 and 1.5 MeV (Figure 9 and 10b, c), and subsequently EABF and EBF values according to Z_{eq} at energies of 15 MeV (Figure 9 and 10d). These results indicated that S6 is a superior radiation- shielding material.

Figure 6 The Z_{eq} of Inconel samples VS energy

Figure 7 (a-h). EABF of samples VS energy at 1-40 mfp

Figure 8 (a-h). EBF of samples VS energy at 1-40 mfp

Figure 10 (a-d) EBF for Inconel samples up to 40 mfp at specific energies

3. Fast neutron removal cross sections $(\Sigma_{\rm R})$

Figure 11 shows Σ_R for Inconel samples. It is generally known that Σ_R decreases when the content of high-Z elements increases. The Inconel sample S1 has the highest Σ_R value, indicating that it has a higher neutron shielding than other Inconel samples.

This work estimated the radiation and neutron shielding properties of some Ni- base superalloys of Inconel 600, 601, 617, 625, 625LCF, 686, 690 and 693. The μ_m , Z_{eff} , N_{el} , HVL and MFP were determined at energy levels from 1 keV to 100 GeV. BFs were simulated at energy levels from 0.015 to 15MeV at deep penetration of 1-40 mfp. The Σ_R was determined by the partial density method. The results showed that PE, CS and PP are the main processes at low, intermediate and high energy ranges, respectively. In addition, the μ_m , Z_{eff} , N_{el} , HVL and MFP values are dependent on the energy level and Inconel 686, sample S6, showed the highest value while the lowest HVL and MFP values also included BFs. These results indicate that Inconel 686 is the best radiation shielding medium. The determination of Σ_R of Inconel samples at an energy ranging from 2 to 12 MeV, showed that Σ_R of Inconel 600 has the highest value. It means that Inconel 600 is better neutron shielding than the other Inconel samples. And this work is a simulation that can be developed with other materials.

This work estimated the radiation and neutron shielding properties of some Ni-based superalloys of Inconel 600, 601, 617, 625, 625LCF, 686, 690, and 693. The μ_m , Z_{eff} , N_{el} , HVL, and MFP were determined at different energy from 1 keV to 100 GeV. As well, BFs were simulated at energy from 0.015 to 15MeV at deep penetration 1–40 mfp. The Σ_R was determined by the partial density method. The results showed that PE is the main process at low energy ranges, CS at intermediate energy ranges, and PP is the main process at high energy ranges. In addition, the μ_m , Z_{eff} , N_{el} , HVL and MFP values are dependent on energy levels and Inconel 686, sample S6 in our study, showed the highest value while the lowest HVL and MFP values also included BFs. These results indicated that Inconel 686 is the best radiation shielding medium. The determination of Σ_R of Inconel 600 has the highest value. It means that Inconel 600 is better neutron shielding than the other Inconel samples.

Acknowledgements

The researchers would like to thank Silpakorn University, Thailand for supporting this article.

References

- Abouhaswa, A. S., Rammah, Y. S., Sayyed, A. I., & Tekin, H. O. (2019). Synthesis, structure, optical and gamma radiation shielding properties of B₂O₃-PbO₂-Bi₂O₃ glasses. *Composites Part B*, 172, 218–225.
- ALMisned, G., Tekin, H. O., Kavaz, E., Bilal, G., Issa, S. A. M., Zakaly, H. M. H., & Ene, A. (2021).Gamma, Fast Neutron, Proton, and Alpha Shielding Properties of Borate Glasses: A Closer Look on Lead (II) Oxide and Bismuth (III) Oxide Reinforcement. *Applied Sciences*, 11, 6837.
- Alloy Handbook. (2022). Product handbook of High-Performance Nickel Alloys. Retrieved from https://www.specialmetals.com/documents/nickel-alloy-handbook.pdf
- Alotaibi, B. M., Alotiby, M., Kumar, A., Mahmoud, K. A., Sayyed, M. I., Al-Yousef, H. A., Al-Hadeethi,
 Y. (2021). Gamma-ray shielding, physical, and structural characteristics of TeO₂-CdO-PbO-B₂O₃ glasses. *Optical Materials*, 119, 111333.
- Boukhris, I., Al-Buriahi, M. S., Akyildirim, H., Alalawi, A., Kebaili, I., & Sayyed, M. I. (2020).
 Chalcogenide glass ceramics for radiation shielding applications. *Ceramics International*, 46(11), 19385-19392.
- Issa, S. A. M., Rashad, M., Zakaly, H. M. H., Tekin, H. O., & Abouhaswa, A. S. (2020). Nb₂O₅-Li₂O-Bi₂O₃-B₂O₃ novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. *Journal of Materials Science: Materials in Electronics*, 31(24), 1–18.
- Issa, S. A. M., Sayyed, M. I., Zaid, M. H. M., & Matori, K. A. (2017). A comprehensive study on gamma rays and fast neutron sensing properties of GAGOC and CMO scintillators for shielding radiation applications. *Journal of Spectroscopy*, 2017, 1.
- Kaur, T., Sharma, J., & Singh, T. (2019). Review on the scope of metallic alloys in gamma rays shield designing. Progress in Nuclear Energy, 113, 95–113.
- Kavaz, E., Tekin, H. O., Kilic, G., & Susoy, G. (2020). Newly developed Zinc-Tellurite glass system: An experimental investigation on the impact of Ta₂O₅ on nuclear radiation shielding ability. *Journal of Non-Crystalline Solids*, 544, 120169.
- Levet, A., & Özdemir, Y. (2017). Determination of effective atomic numbers, effective electrons numbers, total atomic cross- sections and buildup factor of some compounds for different radiation sources. *Radiation Physics and Chemistry*, 130, 171–176.
- Manjunatha, H. C., Seenappa, L., Chandrika, B. M., Sridhar, K. N., & Hanumantharayappa, C. (2018). Gamma, X-ray and neutron shielding parameters for the Al-based glassy alloys. Applied Radiation and Isotopes, 139, 187-194.
- Ravangvong, S., Nisspa, W., Glumglomchit, P., Amornsophon, P., Kanuenghet, R., Pakdeepensuk P., ...
 Kaewkhao, J. (2022). Effects of WO₃ on Radiation Shielding Properties of WO₃-TeO₂ Binary Tellurite
 Glass System. Integrated Ferroelectrics, 222, 125-135.

- Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. *Radiation Physics and Chemistry*, 166, 108496.
- Sayyed, M. I., & Elhouichet, H. (2017). Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B₂O₃-TeO₂) glasses. *Radiation Physics* and Chemistry, 130, 335-342.
- Singh, V. P., & Badiger, N. M. (2014). Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy, 64, 301-310.
- Singh, T., Kaur, A., Sharma, J., & Singh, P. S. (2018). Gamma rays' shielding parameters for some Pb-Cu binary alloys. Engineering Science and Technology, an International Journal, 21(5), 1078–1085.
- Singh, V. P., Badiger, N. M., Chanthima, N., & Kaewkhao, J. (2014). Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. *Radiation Physics and Chemistry*, 98, 14-21.
- Sriwongsa, K., Glumglomchit, P., Sualuang, B., Arunoros, P., Pansuay, M., Ravangvong, S., & Khobkham,
 C. (2022). Shielding of uncharged and charged radiation of PbO-B₂O₃-SiO₂-Na₂O glass system.
 Naresuan University Journal: Science and Technology, 1(30), 109-119.
- Sriwongsa, K., Laopoonphol, N., Ariyalerdchai, S., Glumglomchit, P., Pungpang, N., Ravangvong, S., &
 Khobkham, C. (2020). The Comparative Study of Photon Shielding Properties of MoNbCrVTi and
 MoNbCrZrTi Alloy Materials. Suranaree Journal of Science and Technology, 27(4), 010023, 1–6.
- Sriwongsa, K., Sirimongkolchaikul, J., Sukrasorn, C., Bussaparoek, T., Kanunghet, S., Phansuea, T., ...
 Kaewkhao, J. (2022). Radiation and Fast Neutron Shielding Properties of Nickel-Based Superalloys: Inconel 600, 718 and 725 Superalloys. *Integrated Ferroelectrics*, 224, 120–133.
- Sun, Y., Chen, L., Li, L., & Ren, X. (2020). High-temperature oxidation behavior and mechanism of Inconel 625 superalloy fabricated by selective laser melting. *Optics and Laser Technology*, 132, 106509.