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Abstract

The Exponentially Weighted Moving Average (EWMA) control chart is widely used for detecting and controlling the

variations in production processes in order to gain efficient manufacturing process. The control chart can be applied to

engineering, medical, financial, psychology fields, and etc. In general, one of the control chart performance metrics is Average

Run Length (ARL). Therefore, the objective for this research is to approximate the ARL using Markov Chain Approach (MCA)

for EWMA control charts for a binomial distribution underlying the ratio of two Poisson means. The proposed MCA is compared

with Monte Carlo Simulation (MC) by using absolute percentage relative error. In addition, this research compared the efficiency

of EWMA and Cumulative Sum (CUSUM) control charts and found that in the aspect of process change detection, CUSUM

performed better than EWMA for all changing levels.
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Introduction

A Statistical Process control Charts (SPC) is a
control chart for controlling the manufacturing
process in order to have a constant production rate or
adapt the production process for better outputs. In
addition, it helps decreasing the variations in
manufacturing process such that the product quality
standards are met. In order to increase the ability in
checking the quality control with faster and less
errors, for example in 1924, Shewhart from USA
proposed a well-known control chart, called
Shewhart control chart, which was the first control
chart to apply for a production process. The control
chart was able to detect large changes (0 >1.50). In
1954, a British statistician proposed a Cumulative
Sum Control Chart (CUSUM) and in 1959, Robert
proposed an

Average Control Chart (EWMA). Both control charts

Exponentially Weighted Moving

detect small changes (0 <1.50) better than the
Shewhart control chart. In practice, EWMA control

chart is widely used for detecting the changing means

and variations in the performance of a stochastic
system. In addition, Nong, Connie, and Yebin
(2002) applied the EWMA control chart for
detecting the changes in the intensity of events for
network intrusion detection systems. Han, Tsung, Li,
and Xian (2010) studied the EWMA and CUSUM
control charts in economics and finances for detecting
the turning point in IBM’s Zhang
and Chen (2004) proposed to use EWMA control

stocks.

chart for life time data.

Generally, count data was described using a
Poisson model such as the number of non-
conforming items in an inspection unit, number of
accidents among factory workers, the production
quality measurement from blemishes, number of
patients monthly in a clinic. The suitable distribution
for these data is Poisson distribution. Control Charts
for Attributes is a control chart for detecting the
characteristics of products, such as good or bad,
normal or damage, blemish or non-blemish. The
widely used Control Charts for Attributes are p chart,

¢ chart, and u chart. Literature is also available on
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control charts based on counted data. Brook and
Evans (1972) studied CUSUM chart for monitoring
the mean of a Poisson process. Lucas (1985)
described the design and implementation procedure
for counted data for detection of increase or decrease
in the count level. Gan (1990) worked on the
Average Run Length for the EWMA chart for
Poisson data. Recently Chen, Zhou, Chang, and
Huang (2008) obtained attribute control charts using
a generalized zero-inflated Poisson distribution.
However, in many situations the traditional technique
of the Shewhart control chart may not be suitable, as
for many processes, the assumptions of a Poisson
distribution may provide an inadequate model.
Distribution of counts generated by various types of
processes cannot be modeled by the Poisson
distribution for use in a c-chart. Recently, Hoffman
(2003) developed control limits based on negative
binomial for counted data with extra Poisson
variation.

The problem of comparing two Poisson rates has
been studied in the literature, for example, Nelson
(1987); Sahai and Misra (1992); Price and Bonett
(2000); (2004),

Krishnamoorthy and Thompson (2004); and Gu,

Bratcher and Stamey
Ng, Tang, and Schucany (2008). In many cases, a
binomial distribution may be more flexible and
natural to use in place of a Poisson distribution, when
the control charts for the ratio of two Poisson means
need to be constructed, as a situation may require
controlling the ratio rather than a single parameter.
In such situation, a binomial distribution derived
based on the ratio of two Poisson means can be used
to develop the EWMA chart.

Average Run Length (ARL) is a metric to
measure the performance of a control chart whether a
process is in-control or out-of-control. ARL is the
number of average samples in the control limit before

the process signals the out-of-control for the first

time. ARL can be categorized into 2 states, ARL, (a
process is in-control) and ARL, (a process is out-
of-control). For a good performance control chart,
the value of ARL, should be small.

In this paper, we approximate the Average Run
Length (ARL) using the Markov Chain Approach
(MCA) method of the EWMA chart when
observations are a binomial distribution underlying
the ratio of two Poisson means. The rest of this paper
is organized as follows. In the next section we give a
description of the characteristics of control charts.
The approximation of the ARL using the Markov
Chain Approach is presented in Section 3. The

numerical results are reported in Section 4 and

Section 5 presents the conclusion.

Methods and Materials

1. Characteristics of Control Charts

Given an sequence X, X,,..,X, be
independent identically distributed random variables.
Each random variable is generated using a binomial
distribution F'(x,n,p), where p is a provided
parameter. Based on the assumption that an in-
control condition the parameter is known ( i.e.,
p=p,), at some change-point time v < infinity,
the parameter p may be changed to an out-of-
control where value pis not equal to p,.

From the previous  paragraphs, the
performance metric of a control chart is the Average
Run Length, which has 2 states, ARL, (in-control
ARL) and ARL, (out-of-control ARL). ARL, (in-
control ARL) is the average of samples before the
process is out-of-control limit. Generally, the ARL,
should be large. While ARL, is the average of
samples when the process changes until the process is
out of control. Therefore, the ARL, should be small.

The condition of the stopping time 7 is that
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ARL,=E,(r)=K

where K is given (usually large) and E_ () is
the expectation under distribution F(x,n, p), for the
in-control process. The quantity E (7) is usually

called the in-control Average Run Length (ARL0 )

ARL, = E, (7),

where E () is the expectation under the
assumption that the change-point happens at time
v<oo and p is the value of the parameter after the
change-point. In practice, the condition in Eq. (2) is
usually evaluated when v =1as a zero staec. The
quantity E,(z) is usually called the out-of-control
Average Run Length (ARLl).

1.1 Binomial

model when the underlying

distribution is the ratio of two Poisson means

(M) e\ (_B_
reo={()z3) (&%

¢y

Another characteristic of a control chart is

obtained by minimizing the quantity

(2)

Let X and Z be two independent Poisson

variables with parameters « and B respectively.

Then, the condition distribution of X given X+Z

follows a binomial distribution with parameters n
a
a+p’

distribution is the ratio of the density function of two

and p= The binomial

underlying the

Poisson means X ~ Bi(n, p = ), which can be

+p

written as

j ; x=0,1,2,...,n. (3)

The mean and variance of the above distribution are as follows

w0 =n{;55)
and Var(X)= "%
(a+p)

1.2 The Exponentially Weighted Moving
Average Control Chart
The Exponentially Weighted Moving
Average (EWMA) control chart was introduced by

Y, =2X,+(1-4)Y_,

Roberts (1959) which this chart is an effective
alternative to the Shewhart procedure for detecting
small changes of a process mean. The EWMA

statistics can be shown as follows:

i=123,.. (4)

where A is the weight of past information, 0 < A <1. The control limits of binomial EWMA control chart are

a
UCL s = n(a+ﬂJ+hU\/

and

a
LCL,,,., = n(a+ﬂj_hL\/

A 2
(;Tﬁfz—zu_a_l))

A 2
(;Tﬁy2_ﬂﬁ—ﬂ—i))
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where 7,

EWMA control limit to correspond the value of

and /A, are the coefficient of the

UCLyypy = 1

[aiﬂJ+

ARL, and i— oo the control limits of the EWMA

chart can be rewritten as follows:

neff A
hy xj (a+p)2-4

and

1.3 The Cumulative Sum Control Chart
The Cumulative Sum (CUSUM) control

LCLy, = | —%—|-h, |4
o a+p) \(a+py’2-2

observed sequence of random variables. In general,

CUSUM statistics can be written as a sequence

chart is designed to detect mean changes of an with
independent and identical distribution (i.i.d) in an
Z,=max(Z,_tX,-a, 0),i=12,... (5)

is the CUSUM statistics, X,

1

where Z.

; is the
sequence of a binomial observation, Zy=1u is the
initial value, and @ is the constant recall reference

value of the CUSUM control chart.
7, =inf { t>0

where b is the constant parameter known as
the upper control limit.
1.4 Comparison of Analytical Results
The efficiency of the MCA method is
measured by the absolute percentage of relative error

(Diff (%)). The ARL values obtained from the MCA
Diff (%) =

where H(u) is the ARL of the MCA method
values,
and H () is the ARL of the Monte Carlo simulation
method values.

The criteria for consideration are as follows: If
the Diff (%) is less than 2%, then ARL values from
the MCA and the MC methods are similar and in

good agreement.

|Hw)-H)|

The first passage time of the CUSUM control chart is

given by:

:Z; > b},

are compared with the values obtained from the Monte
Carlo simulation (MC) method under the same
parameters.

The comparison of efficiency based on the
absolute percentage of relative error (Diff (%)) is

defined as:

x100%. (6)
H(u)

2. Approximation of the ARL using the Markov
Chain Approach

The Markov Chain Approach is one of the most
effective methods for studying the characteristics of a
control chart. This approach has been discussed by
many authors (see Brook and Evans (1972). Lucas

and Saccucci (1990) introduced the Markov Chain
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Approach for approximating ARL i state in an in-
control process where they assume that observation
X5 ] =1,2,...,N is an in-control state and

j=N+1 is out-of-control state. The transition

P =(X,
Pj can be replaced to the transition probability

matrix (P) and we get the element of the matrix

(P;) as follows

probability, P,»j , is the probability of moving from

state [ to state j in one step and is given by

y =% | X, =x).

B L By | Bya
M (@) ‘ M Pll L PI(N+1) P R (IN - R)IN
o P=| M O M i >
P= B, L Py | PN,N+] 0; IN
- —_ -— | -—- P(N+1)1 L P(N+1)(N+l)
0 L 0 | 1
whereR is the N x N transition probability —The k stage transition probability matrix P, is

matrix among the in-control states, I, is the useful for evaluating the ARL because it contains the

Nx N identity matrix, 1,is the N x1 column

vector of ones, 0 is the 1x N row vector of zeros

Rk

k
p :[0T
N

The vector (I, —R)1,is the vector of transition

and 1 is the scalar of one.

probabilities from state i < NV +1to the state N +1

probability that the chain goes from one state to

another state in & steps. This matrix is

I

a, —R")IN}

in k steps. Hence

P(z, <k|X, =x,) = element[(I- R)1, ](i)
T PzS)T (IN ) Rk )lzv

where P]S)Tis the initial probability vector with 1 at " position and O otherwise. Then

P(z, :k|X0 =x,)=P(z, Sk|X0 =x,)—P(z, Sk—1|XO =X,)

- P]S)T (kal -

using Equation (7), the ARL can be rewritten as

R, %)

ARL(N) = kPy" (R =R“)1,

k=1

_ ()T k-1
=Y POTRMY

k=1

PO, —-R)'1,

)
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where P](\,i)T is a vector with initial probability
vector [O, ceesy O, 1, O, ceey 0]

the identity matrix, and 1 is the unit vector.

the lower and upper control limits. The region of the

, Lis in-control state is divided into 7 subintervals.
IxN

The jth subinterval of upper control limit (U j) s

An ARL approximation by use of MCA for j " subinterval of lower control limit (Lj) and the
monitoring mean shifts of the process is in interval of

-th . . . .
i" subinterval of midpoint (m;) are given by

U =h +j(hU —h)
L

J

n
m =h, + (2i =1)(hy, —h,)
2n
Lo U= =h)
' n

Consequently, the transition probability equation (Py) can be rewritten as

P =P(L,<Z<U,|Z_ =m)

@
and substitute the EWMA statistic  transition probability equation is
(Yt), Lj, Uj and m, into Equation (9). This
P, = P(LCLyyy,, < AY,+(1=A)EWMA, <UCLy,,,, | EWMA, =CLy,,, )
hL + (J_l)(hU _hL) _(1_&)[}& + (21_1)(hU _hL)]<Z/Yi <hL + .](hU _hL)
n 2n n
L 2i~1)(h, —h
_(1_1)(}&_‘_( 1= )( (O L)j
2n
hL n (J_l)(hU _hL) _(l_ﬂ)(hl‘ + (21_1)(hU _hL))</IY; <hL A .](hU _hL)
n 2n n
Y 2i~1)(h, ~h
_(l_i)(hL_'_( l1— )( U_ L)j
2n
h, +M(2(j—l)—(l—ﬂ,)(2i—l))< Y,
_p 2nA
(hU B hL) . .
<h +—=(2j-(1-2)2i-1
A (2/-1-)Q2i-D)
For a one-sided, the transition probability equation is
hy (2(-D)-(1-DRi-1)) <Y,
5l 2nA ' 10
if —_ .
(hy) (4 :
<+——=(2j-(1-4)(2i-1
5o (27 = (A=1)2i=D)
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Results and Discussion

In this section, we compared the results obtained
for the ARL, and ARL, from the MCA method with
the results of Monte Carlo simulations for the EWMA
chart. We also compare the CPU times required to
compute the numerical values for 4RL, and ARL .
The results are shown in Table 1 for the in-control
parameter value o, =5, ARL; =370 and in Table 2
for an in-control parameter value S =12, ARL,
=370. The numbers in each cell in the table represent
the value of the ARL, and ARL and in parentheses
() is the CPU time for the calculation. The table
shows that the results from the MCA method are

close to the MC simulation results. Obviously, MCA

method for evaluating ARL, and ARL is very
effective alternatives to the MC. As shown in
Tables1 -2, the use of the MCA method for ARL,
and ARL, can greatly reduce the computation times
as compared with MC approach. In Tables 3, the
ARL, and ARL, values for the MCA method were
calculated from Equation (8). For the EWMA we
obtain a pair of optimal parameter values of A
=0.05, h,=10.989998, for the CUSUM procedure
we used a boundary valuea=10,b=5.05. The
results in Table 3 show that for all magnitude of
changes, CUSUM chart performs better than EWMA

chart. Table 4 shows that the results are similar to

those in Table 3.

Table 1 Comparison of ARL between the MCA and the MC methods when £, =10, ARL, =370

a MCA MC Diff (%)
h, =34.849 h, =34.849
5.0 370.244 (158) 369.359 * 0.105 (3245) 0.239
5.1 192.438 (159) 191.438 T 0.108 (1241) 0.52
5.3 100.797 (158) 100.373 T 0.303 (1025) 0.421
5.5 74.959 (159) 74.954 £ 0.145 (874) 0.007
5.7 62.497 (159) 62.590 T 0.089 (745) 0.149
6.0 52.175 (159) 52.238 £ 0.054 (458) 0.121
6.5 42.729 (158) 42.784 £ 0.034 (351) 0.129
7.0 37.095 (158) 37.126 £ 0.024 (312) 0.084
8.0 30.446 (159) 30.460 £ 0.016 (268) 0.046
The numbers in parentheses () are CPU times in seconds.
Table 2 Comparison of the ARL between the MCA and MC methods when ¢, =8, ARL, =370
ﬁ MCA MC Diff (%)
hy, =41.56 h, =41.56
12.0 371.264 (158) 369.223 + 0.126 (4582) 0.549
11.9 265.377 (158) 265.687  0.128 (1856) 0.117
11.7 165.946 (158) 165.791 + 0.818 (1226) 0.093
11.5 121.942 (159) 120.604 *+ 0.438 (1052) 1.097
11.3 99.169 (158) 99.336 £ 0.278 (902) 0.168
11.0 79.862 (159) 80.073 £ 0.162 (821) 0.264
10.5 63.419 (158) 63.385 £ 0.082 (729) 0.054
10.0 53.922 (159) 53.939 £ 0.052 (623) 0.032
9.0 42.469 (158) 42.464 £ 0.028 (421) 0.012

The numbers in parentheses () are CPU times in seconds.
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Table 3 Comparison of the ARL of the EWMA and CUSUM charts when 3 =9, ARL, =370

a EWMA CUSUM
A=0.05

hy, =10.98998 a=10b=5.05
1.0 369.256 369.362 * 0.124
1.1 83.878 59.254 * 0.245
1.3 40.404 21.742 % 0.057
1.5 29.212 13.476 + 0.029
1.7 23.542 9.927 *0.018
2.0 18.652 7.261 * 0.012
2.5 14.267 5.213 + 0.008
3.0 11.815 4.179 + 0.006
4.0 9.129 3.142 + 0.004

Table 4 Comparison of the ARL of the EWMA and CUSUM charts when ¢, =10, ARL;, = 500

y) EWMA CUSUM
A=0.05
hy, = 68.3233 a=66.67 b =100

5.0 4917.695 500.211 * 1.056
4.9 241.659 183.831  1.093
4.7 118.524 71.415 + 0.267
4.5 87.649 43.742 £ 0.142
4.3 73.585 31.342 + 0.078
4.0 61.671 21.841 + 0.044
3.5 50.407 14.190 + 0.022
3.0 43.260 10.320 + 0.013
2.0 33.926 6.535 = 0.006

Conclusion and Suggestion

In this paper, an approximation of the Average
Run Length (ARL) using the Markov Chain
Approach of the EWMA control chart with a
binomial distribution underlying the ratio of two
Poisson means are presented. The ARL obtained by
the MCA method is close to the MC simulation
results. The MCA method clearly takes much less
computational time than the Monte Carlo (MC)
simulation method. In addition, the performance of
the CUSUM chart is superior to the EWMA chart for

all magnitudes of changes when the observation is a

binomial distribution underlying the ratio of two

Poisson means. The MCA approach can be applied to
some other distributions, e.g. a zero inflated Poisson
distribution. It is suggested that an approximation of
the Average Run Length (ARL) using the Markov
Chain Approach of CUSUM chart can be applied to
real data, empirical data, and real-world situations
applications for a variety of data processes such as in
medical and demographic, economics, finance,
environmental, etc. These issues should be addressed
in future research. Furthermore, MCA method for
evaluation ARL can be developed other control charts
such as Cumulative

sum, Double Exponentially

weighted Moving Average control charts, etc.
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