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Abstract 
 In this paper, we introduce a new semigroup which is not commutative. Then we investigate some properties in this structure. 
We discover that this semigroup has no a proper right ideal. After that we find some subsemigroups of this semigroup which are 
left ideals. Finally, we prove that the natural numbers under addition can be embedded into this semigroup. 
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Introduction 
 

 In mathematics, semigroup (   ) is an algebraic 
structure consisting of a nonempty set   together with 
an associative binary operation   on  , i.e. (   )  
    (   ) for every     and   in  . As long as 
not otherwise stated, we write the semigroup 
operation as a multiplication. And we mostly omit it 
typographically, i.e. we write   instead of (   )    
instead of    ,  (  ) instead of   (   ) and 
soon.  
 A semigroup, unlike a group, need not have  
an identity element and its elements need not have   
inverse within the semigroup. These mean that every 
group is also a semigroup with the identity.  
Of course, the notion in an algebraic semigroup 
theory is a straightforward generalization of a group 
theory. Thus several researchers are interested in  
the classes of semigroups.  
 In fact, the natural number   is a semigroup 
under additive operation. This is a good example to 
increase understanding about the algebraic structure in 
the semigroup theory. Backelin, (1990) studied the 
natural numbers under addition into three parts. The 
first part consists the number of all difference 
subsemigroups of the natural numbers under addition 
which corresponding to a given Frobenius number. 

Moreover, they counted the number of all maximal 
subsemigroup   with a given Frobenius number. 
Finally, they found the number of all subsets   of 
*         + such that there are at most   different 
sums of pairs of elements from  . Barucci, (2009) 
studied deals mainly with numerical semigroups, i.e. 
subsemigroups of   with zero and with finite 
complement in   and also studied commutative ring 
theory.  
 It is easy to see that the natural numbers under 
addition is commutative and satisfies cancellative 
property. Therefore, many definitions coincide under 
this structure. It is well-known that each 
subsemigroup of a commutative semigroup is still  
a commutative semigroup. Similarly, every 
subsemigroup also preserves cancellative property. 
These motivate us to find a new semigroup which 
contains the natural numbers under addition and  
its operation is not commutative. 
 In this research, we define a new semigroup 
which covers the natural numbers under addition. 
Some characterizations in this structure are described. 
Moreover, we find some left ideals of the 
noncommutative semigroup and prove that (   ) is 
isomorphic to a subgroup of the noncommutative 
semigroup. 
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Preliminaries 
 

 In this section, we give some definitions that will 
be used in this paper. 
 Definition 1. A semigroup   is said to be  
a commutative semigroup if the operation is 
commutative. That is,       for every         
 Definition 2. A nonempty subset   of  
a semigroup   is called a subsemigroup of   if   is 
closed under the operation, that is,       
for every           
 Definition 3. An element   of a semigroup   is 
called a left [right] identity element of   if    
  ,    - holds for every      
 Definition 4. An element   of a semigroup   is 
called an idempotent element if        
 Definition 5. A semigroup   is called a left 
[right] cancellative semigroup if       ,     - 
implies     for every           
 Definition 6. An element   of a semigroup   is 
called a regular element if there is     such that 
       
 Definition 7. A nonempty subset   of a 
semigroup   is called a left [right] ideal of   if 
     ,    -  that is      ,    - for every 
    and       

 
Main Results 

 
 In this section, we investigate a new semigroup 
from the power set of the set of all integers. We 
show that this semigroup is not a commutative 
semigroup. We find out that this structure does not 
have a right ideal. Then we find some subsemigroups 
of this semigroup which are left ideals. Moreover, we 
prove that the natural number under addition can be 
embedded into this semigroup.  
 Lemma 1. Let      ( ) be such that   and   
have a minimum element. Then 

             *           +  
 

Proof. Suppose that             and   
*           +  We note from        that 
               Let   be an arbitary element 
in    Then          for some      Since 
     we have         So 

                    . 
This implies that     and we get that         
Hence the proof is completed.  
 Theorem 2. Let   *   ( )    has a 
minimum element+  Define              by 

    *           + for all        
Then (   ) is a semigroup. 
 
 Proof. We can see that     since * +   . Let 
       then      ( ) and     have a 
minimum element. To show that        let 
      and then          for some      
As     and      we have             
Therefore      ( )  We note from     have a 
minimum element and by Lemma 1 that     has a 
minimum element. Thus        Next, we let 
         To show that (   )      (   ), 
let   (   )     Then      (   )    for 
some       By Lemma 1, we deduce that 

  (         )    
           (      ). 

From             we have     (   )  
Therefore (   )      (   )  Let     
(   )  Then          for some        
By        we have          for some 
     From Lemma 1, we get that 

                  (      )
 (         )   
    (   )     

Thus   (   )     So (   )      (   )  
Hence (   ) is a semigroup. 
 
 From now on, we refer to (   ) as the semigroup 
which is defined in Theorem 2. The following 
example shows that this semigroup is not a 
commutative semigroup. 

Example 3. Consider   *     + and let 
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  *     +  It is clear that        We compute 
    *     + and so     *     +  Then 
         This shows that   is not a 
commutative semigroup. 

Theorem 4. Let      Then the following 
statements are equivalent: 
  ( )         
  (  )   is a left identity. 
        (   )   is an idempotent. 
 

Proof. ( )  (  ) Assume that         Let 
     To show that        let        Then  
         for some      By our assumption, 
we get that            Thus        Let 
     then                  and 
hence        Therefore   is a left identity. 
           (  )  (   ) It is obvious. 
           (   )  ( ) Assume that   is an idempotent. 
That is,        We will show that          
Since       and    (   )             
we have                 Hence         

Theorem 5.   is a left cancellative semigroup.  
 
Proof. Let         such that          

We must show that      Let      Then  
            Since          we have 
            Thus                
for some      So       and thus      
Similarly, we deduce that     whence       
Therefore   is a left cancellative semigroup. 

Example 6. We note that   *     +   * + 
and   *     + are elements in    We consider 
    *           +  *     + and the set 
    *           +  *     +. Hence we 
get         but    . This shows that   is 
not a right cancellative semigroup. 
Theorem 7.   is a regular semigroup. 
 
 Proof. Let      We will show          
for some    . We choose   *  + where 
      . Clearly,    ( ) and        . 

These mean that    . Let        . Then 
there exists     such that   

     (   )    
                       

   (  )    
                                     . 
Thus        . Let    . We obtain that 

    (  )    
                          

                                   (   )         . 
Therefore        . So        . Since   
is an arbitrary element of  , we have   is a regular 
semigroup. 

Theorem 8.   has no proper right ideals.  
 
Proof. Let   be any right ideal of  . So     

   We will show that      Let      We will 
verifly that      Since      so choose      
we have            We choose   
*                 +   Clearly,      
We consider  

(   )     *   (   )        + 
                        *                + 

                               *          (      
                                          )      +       
Note that   (   )           Therefore 
     As      we get that      Hence   has 
no a proper right ideal.  
 
 We note from Theorem 8 that the semigroup   
has no any right ideal. Then we will study 
subsemigroups of   which are left ideals. 

Theorem 9.  Let    *   ( )     is a 
nonempty finite set+  Then    is a left ideal of  .  

 
Proof. We will show that          Let 

     and      Then    ( ) and   is a 
nonempty finite set. We can write that   
*          +  where            and 
     This implies that 

    *                   
                                                    + 
So |   |     Thus     is a nonempty finite set. 
Therefore        and We conclude that    is a 
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left ideal of     
Corollary 10. Let    *   ( )     is a 

nonempty finite set+  Then (    ) is a subsemigroup 
of (   )   

Theorem 11. Let    *      + where 
   *         +  Then    is a left ideal of    

  
 Proof. Let     and       where      
Then    *             +  This implies that  

     *       (      )    
(      )     + 

                               
where           Therefore         and 
so    is a left ideal of     

Corollary 12. Let    *      + where 
   *       +  Then    is a subsemigroup of 
    

Theorem 13. Let    *      + where 
   *        +  Then    is an abelian 
subgroup of     

 
 Proof. It follows from Corollary 12 that    is a 
subsemigroup of  . We note that      . Let 
      where      From the proof of Theorem 
11, we have               and hence 
               Therefore    is the identity. 
Since      we have          This implies that 
          (  )      (  )           

So     is an inverse of     Hence    is a subgroup 
of semigroup    Clearly,             for all 
       Therefore    is an abelian subgroup of    
 
    For a mapping    we write    instead of the 
image of   under   where   belongs to domain of  . 

We recall the notion of isomorphism. Let (   ) and 
(    ) be two semigroups. A function        is 
called a homomorphism if for any     
  (   )         
     A semigroup   is said to be isomorphic to a 
semigroup    if there exists a bijective 
homomorphism from   onto    and a semigroup   is 
embedded into a semigroup    if there exists an 

injective homomorphism from   into     
    Theorem 14. Let    *      + where 
   *        +  Then (   ) is isomorphic to 
(    )  
 

Proof. Define a homomorphism        by  
      for all      

Firstly, we will show that   is a bijection. Let 
      be such that        We get that 
      and so                  Thus 
  is injective. Clearly,   is surjective. Finally, we 
will verifly that   is a homomorphism. Let        
This implies that  

(   )                     
We obtain that   is an isomorphism. Hence (   ) is 
isomorphic to (    )  
 
 In consequence of the above theorem, we will 
deduce that (   ) is embedded into (   ) in the 
following corollary. 

Corollary 15. (   ) can be embedded into 
(   )  

Let (   ) and (    ) be metric spaces. Then 
(   ) is isometric to (    ) if there exists a 
surjective mapping       such that for all     in 
   (   )    (     )  Such a mapping   is said 
to be an isometry  We note that each isometry is an 
injection.  It is well-known that for a nonempty 
subset   of    (  | |) is a metric space where | | is 
the absolute-value metric. 

Proposition 16. Let       and   a surjective 
isometry from (  | |)  onto (  | |)   Then the 
following statements hold: 
 ( ) if   is a finite set, then (    )       or       
            (    )         
     (  ) if   is an infinite set, then  
             (    )        
 

Proof. Assume that   is a finite set. Put   
*          + where            for some 
     Similarly,   *          + where    
         We will show  that (    )  
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     or (    )        From the surjectivity 
of    there exist       such that       and 
       Since   is an isometry function, we have 
| –   |  |  –   | and | –  |  |  –    |  We 
conclude from         and         that  
            and so              
These imply that  

    ( –  ) ( –  ) 
                         (      ) (   –   ) 

                                                             (3.1) 
From   is an isometry mapping, we obtain that 

|   |  |     | 
             |     | 

                                                                      (3.2) 
Hence we have two cases to consider  
Case1 : |   |       From equation 3.1 and 
3.2, we deduce that 
                        (          )        
                               (   )        
                               (     )        
                                    
Case2 : |   |       From equation 3.1 and 
3.2, we get that  

     (          )        
                          (   )        
                           (     )        
                               
It follows from two cases that (    )       or 
(    )         
 Assume that   is an infinite set. We will show 
that (    )        Let         and 
         Since   is a surjection, there exists 
    such that       From   is an isometry 
function, we get |   |  |     |  |    |  
We conclude from the minimality of   and   that 
                                                         (3.3) 
If         then   is a finite set which is a 
contradiction. Hence         there exists     
such that      We note from   is an isometry 
function, we get that  

    |   | 
                  |     | 

               |    | 
                                                                        (3.4) 

From equation 3.3 and 3.4, we deduce that  

                                ( – )  ( –  ) 
                                         (    )  (    ) 
                                                               (3.5) 
Similarly, we conclude from   is an isometry 
function that  

    |   | 
                                             |     |            (3.6) 
Suppose that |     |         From equation 
3.5 and 3.6, we deduce that  

        (        )       
    (     )       

                         
Therefore      , then |   |  |     |    
and so     which is a contradiction. So |     | 
        From equation 3.5 and 3.6, we obtain 
that  

        (        )       
    (     )       

                         
It follows that (    )         

Remark 17. For all      we note that   
* +         Hence     * +       It 
follows that the principal left ideal generated by   is 
    and denoted by     

Proposition 18. For any    , let         
Then           if and only if       

 
Proof. Assume that            Note that 

      and       for some        We 
obtain that  

                       
                                 (   )       
                                 (   )      
                                    

To verify that      let      Then we have 
         for some      It follows that 
                    Therefore      
Similarly, we get that      Hence       
 From the fact that    (   )     (   ) and 
Proposition 18, we obtain the below corollary. 

Corollary 19. Let      Then    is a 
commutative semigroup. 

Theorem 20. Let   be arbitrary fixed element in 
   Then (    ) is an abelian subgroup of (   )   
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Proof. From Corollary 19, we obtain that    is a 

commutative semigroup. Let   *     +     
then       To show that   is the identity of     let 
      Then       for some      Consider, 

   (   )             
                                                         
From Proposition 18, we get that        Since 
   is a commutative semigroup, we obtain     
   So   is the identity of     Put    *      
    +     It is clear that      . Consider,  
     (    )              
                                               
                                   
We note from Proposition 18 that         Since 
   is a commutative semigroup, we deduce that    is 
an inverse of  . Hence (    ) is a subgroup of 
( , ).  
 

Theorem 21. Let      Then (    ) is 
isomorphic to (   )   
 Proof. Define a homomorphism mapping  
        by         for all       Firstly, 
we will verify that   is a bijective function. Let 
       be such that        So      
      By Proposition 18, we have       We have 
  is injective. Next, let     and put   
*       +     Then       Consider, 

                          
Then we get that   is surjective. Clearly,   is a 
homomorphism and hence (    ) is isomorphic to 
(   )  

Corollary 22. (   ) can be embedded into 
(    )  

Theorem 23. Let      Then      if and 
only if there exists a surjective mapping       
such that   is an isometry function and (    )  
       

 
Proof. Assume that       Then       for 

some     and we let         Define a mapping 
  by         for all    . To show that  
     , let      So       for some      

We have 
       (   )         

Therefore      . Let     and we choose 
             We obtain that  

       (   )      
So   is surjective. Next, we will show that   is an 
isometry function. Let          Then  
                       |   |  |       |  
                                      |(  –   )  (  –   )| 
                                      |   –   |  
Hence   is an isometry function. Finally, we must 
show that (    )        We consider 

(    )           
                                                 (   )   
                                              (      )   
                                                     
Conversely, assume that there exists a surjective 
mapping       such that   is an isometry 
function and (    )        We divide our 
proof into two cases. Firstly, we assume that   is a 
finite set. Since   is surjective and   is finite, we 
can write 
           *          + where            

and   *          + where            
for some    . By assumption, we have     
(    )           Let      Since   is an 
isometry function, we get that 

     |    |           
                                         |      | 
                                                
Thus             Set   *       +     
Let    . Then             Hence   
(      )          Thus        Let 
       Then          for some      
From   is surjective, there exists     such that 
      Since             we obtain that  

                   
                                   (      )     
                                   (      )          
                                         
We see that        Hence          . 
      Now, we consider   as an infinite set. Then 
(    )        Similarly way as above, we can 
prove that       

The following examples show that each condition 
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in Theorem 23 can not be omitted. 
Example 24. Let   *     + and   *     +  

We suppose that       Then       for some 
     This implies that         (   )  
           Since              we have 
        Therefore 

  *                    + 
                 *     +     
which is a contradiction. We list all surjections from 
  onto   as follow that  

   .  
       

 
 /     .  

       
 
 /   

 

   .  
       

 
 /     .  

       
 
 /  

 

   .  
       

 
 / and    .  

       
 
 /  

None of them is isometry. Hence   does not satisfy 
Theorem 23.  

Example 25. Let   *      + and   
*       +  We assume that       then       
for some      This implies that 

         (   )               
Since        and         we obtain that 
        This implies that 
         *                     + 
                         *      +    
which is a contradiction. Thus       We list all 
surjections from   onto   as follow that 
 

   .   
       

  
  /     .   

        
  
 /   

 

   .   
        

  
 /      .    

        
  
 /  

 

        .   
       

  
  / and    .    

        
  
 /  

 

There is only one isometry function which is a 
bijection. That is,     But (    )         This 
implies that   dose not satisfy Theorem 23. 
 It is easy to see that the inverse of an isometry 
function is also isometry. 

Proposition 26. Let   be a bijection from   onto 
  where        If   is an isometry function and 
 
 

(    )        then there exists a bijection 
      such that   is an isometry function and 
(    )          

Theorem 27. Let        Then         if 
and only if         

 
Proof. Assume that           Then there 

exists         such that      and       
From Theorem 23 and Proposition 26, there exists a 
bijection       such that   is isometry and 
(    )        Similarly, there exists a bijective 
isometry       such that (    )        
Therefore    is a bijection from   onto  . We will 
show that        Let     . By Theorem 23, 
there exists        such that    is an isometry 
bijection and (    )       . So          
is also bijective. To verify that      is an isometry 
function, let      . This implies that 

|           |  |         |  
                              |       |  

                                                  |   |. 
Moreover, (    )           Hence      
via Theorem 23. Similarly, we can show that 
      whence      . 

Theorem 28. Let      . Then         
if and only if      .  

 
Proof. Suppose that        . Since 

       and       , we have       
       . So        . By Theorem 27, we 
have      . Assume that      . It follows from 
Corollary 19 that        .  
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So   is surjective. Next, we will show that   is an 
isometry function. Let          Then  
                       |   |  |       |  
                                      |(  –   )  (  –   )| 
                                      |   –   |  
Hence   is an isometry function. Finally, we must 
show that (    )        We consider 

(    )           
                                                 (   )   
                                              (      )   
                                                     
Conversely, assume that there exists a surjective 
mapping       such that   is an isometry 
function and (    )        We divide our 
proof into two cases. Firstly, we assume that   is a 
finite set. Since   is surjective and   is finite, we 
can write 
           *          + where            

and   *          + where            
for some    . By assumption, we have     
(    )           Let      Since   is an 
isometry function, we get that 

     |    |           
                                         |      | 
                                                
Thus             Set   *       +     
Let    . Then             Hence   
(      )          Thus        Let 
       Then          for some      
From   is surjective, there exists     such that 
      Since             we obtain that  

                   
                                   (      )     
                                   (      )          
                                         
We see that        Hence          . 
      Now, we consider   as an infinite set. Then 
(    )        Similarly way as above, we can 
prove that       

The following examples show that each condition 
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