A characterization of clean matrices in $\boldsymbol{M}_{3}(\mathbf{z})$

Benchawan Sookcharoenpinyo

Department of Mathematics, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000
Corresponding author. E-mail address: benchawans@nu.ac.th
Received: 22 December 2016; Accepted: 29 March 2017

Abstract

An $n \times n$ matrix over a commutative ring with identity is clean if it is the sum of an idempotent matrix and a unit. In 2009, Rajeswari and Aziz gave necessary and sufficient criteria for a matrix in $M_{2}(\mathbb{Z})$ to be clean and discussed the involved Diophantine equations. In this paper, we extend those results to a larger set, $M_{3}(\mathbb{Z})$. We characterize when a matrix

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \in M_{3}(\mathbb{Z})
$$

is clean. As its application, we discuss the relation between clean matrices and the existence of non-trivial solution of certain types of Diophantine equations.

Keywords: clean matrix, idempotent matrix, Diophantine equation

Introduction

Let R be a commutative ring with identity and $M_{n}(R)$ be a set of all $n \times n$ matrices over R. Recall that a matrix $A \in M_{n}(R)$ is clean if it is the sum of an idempotent matrix $E \in M_{n}(R)$ (i.e. $E^{2}=E$) and a unit $U \in M_{n}(R)$.

In (Khurana \& Lam, 2004), a characterization of 2×2 clean matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \in M_{2}(\mathbb{Z})$ has been discussed. Later, in (Rajeswari \& Aziz, 2009), necessary and sufficient criteria for a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{Z})$

$$
M_{31} x^{2}-M_{13} z^{2}-M_{32} x y+\left(M_{33}+M_{11}\right) x z+M_{12} y z-M_{31} x+M_{32} y+\left(\operatorname{det} A-M_{33}+1\right) z=0
$$

and

$$
M_{31} x^{2}-M_{13} z^{2}-M_{32} x y+\left(M_{33}+M_{11}\right) x z+M_{12} y z-M_{31} x+M_{32} y+\left(\operatorname{det} A-M_{33}-1\right) z=0
$$

where $M_{i j} \mathrm{~s}$ are minors of A. It is easy to see that $x=1, y=0, z=0$ and $x=0, y=0, z=0$ are solutions of these equations. We shall call them as trivial solutions. A nontrivial solution occurs when $z \neq 0, z \mid x(1-x)$ and $z \mid y(1-x)$. Third of all, we show that if one of the above equations admits a non-trivial solution, then the matrix $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ is clean

If $E \in M_{3}(\mathbb{Z})$ is idempotent, then $\operatorname{det} E=0$ or $\operatorname{det} E=1$. We shall call a clean matrix $E+U$ that 1 -clean if $\operatorname{det} E=1$, and call that 0 -clean if $\operatorname{det} E=0$.

Throughout the paper, we consider 3×3 matrices over \mathbb{Z}. Let $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right), E$ be an idempotent matrix, U be a unit, and $M_{i j}$ s be minors of A.

Main Results

The following lemma is the characterization of all idempotents in $M_{3}(\mathbb{Z})$.

Lemma 1. $E=\left(\begin{array}{lll}e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33}\end{array}\right) \in M_{3}(\mathbb{Z})$ is idempotent if and only if it is one of the following forms:

$$
\left(\begin{array}{ccc}
e_{11} & 0 & e_{13} \\
\frac{e_{23} e_{11}}{e_{13}} & 0 & e_{23} \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{13}} & 0 & 1-e_{11}
\end{array}\right),\left(\begin{array}{ccc}
e_{11} & 0 & e_{13} \\
-\frac{e_{23}\left(1-e_{11}\right)}{e_{13}} & 1 & e_{23} \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{13}} & 0 & 1-e_{11}
\end{array}\right),\left(\begin{array}{ccc}
e_{11} & e_{12} & e_{13} \\
0 & 0 & 0 \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{13}} & \frac{e_{12}\left(1-e_{11}\right)}{e_{13}} & 1-e_{11}
\end{array}\right),\left(\begin{array}{ccc}
e_{11} & e_{12} & e_{13} \\
0 & 1 & 0 \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{13}} & -\frac{e_{11} e_{12}}{e_{13}} & 1-e_{11}
\end{array}\right),
$$

$$
\left(\begin{array}{ccc}
e_{11} & e_{12} & 0 \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{12}} & 1-e_{11} & 0 \\
\frac{e_{11} e_{32}}{e_{12}} & e_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
e_{11} & e_{12} & 0 \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{12}} & 1-e_{11} & 0 \\
-\frac{e_{32}\left(1-e_{11}\right)}{e_{12}} & e_{32} & 1
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
e_{21} & 1-e_{33} & e_{23} \\
\frac{e_{21} e_{33}}{e_{23}} & \frac{e_{33}\left(1-e_{33}\right)}{e_{23}} & e_{33}
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
e_{21} & 1-e_{33} & e_{23} \\
-\frac{e_{21}\left(1-e_{33}\right)}{e_{23}} & \frac{e_{33}\left(1-e_{33}\right)}{e_{23}} & e_{33}
\end{array}\right),
$$

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
e_{21} & 0 & 0 \\
e_{31} & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
e_{21} & 1 & 0 \\
e_{21} e_{32} & e_{32} & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
e_{31} & e_{32} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
e_{31} & e_{32} & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
e_{21} & 0 & 0 \\
-e_{21} e_{32} & e_{32} & 1
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
e_{21} & 1 & 0 \\
e_{31} & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Proof. Let $E=\left(\begin{array}{lll}e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33}\end{array}\right) \in M_{3}(\mathbb{Z})$. If E is idempotent, then $E^{2}=E$ i.e.

$$
\left(\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right)\left(\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right)=\left(\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right)
$$

Then we get the following nine equations:

$$
\begin{align*}
& e_{11} e_{11}+e_{12} e_{21}+e_{13} e_{31}=e_{11} \tag{1}\\
& e_{11} e_{12}+e_{12} e_{22}+e_{13} e_{32}=e_{12} \tag{2}\\
& e_{11} e_{13}+e_{12} e_{23}+e_{13} e_{33}=e_{13} \tag{3}\\
& e_{21} e_{11}+e_{22} e_{21}+e_{23} e_{31}=e_{21} \\
& e_{21} e_{12}+e_{22} e_{22}+e_{23} e_{32}=e_{22} \\
& e_{21} e_{13}+e_{22} e_{23}+e_{23} e_{33}=e_{23} \\
& e_{31} e_{11}+e_{32} e_{21}+e_{33} e_{31}=e_{31} \\
& e_{31} e_{12}+e_{32} e_{22}+e_{33} e_{32}=e_{32} \\
& e_{31} e_{13}+e_{32} e_{23}+e_{33} e_{33}=e_{33}
\end{align*}
$$

Suppose that $e_{13} \neq 0$ and $e_{12}=0$. Putting $e_{12}=0$ in (3), we get $1-e_{11}=e_{33}$. Putting $e_{12}=0$ in (2), we get $e_{32}=0$. Putting $e_{12}=0$ in (1), we get $e_{31}=\frac{e_{11}\left(1-e_{11}\right)}{e_{13}}$. Putting $e_{12}=0$ and $e_{32}=0$ in (5), we get $e_{22}=0$ or $e_{22}=1$. If $e_{22}=0$ then from (4) we obtain that $E=\left(\begin{array}{ccc}e_{11} & 0 & e_{13} \\ \frac{e_{23} e_{11}}{e_{13}} & 0 & e_{23} \\ \frac{e_{11}\left(1-e_{11}\right)}{e_{13}} & 0 & 1-e_{11}\end{array}\right)$. If $e_{22}=1$ then from (6) we obtain that $E=\left(\begin{array}{ccc}e_{11} & 0 & e_{13} \\ -\frac{e_{23}\left(1-e_{11}\right)}{e_{13}} & 1 & e_{23} \\ \frac{e_{11}\left(1-e_{11}\right)}{e_{13}} & 0 & 1-e_{11}\end{array}\right)$.

Similarly, suppose that $e_{13} \neq 0$ and $e_{23}=0$. We obtain that

$$
E=\left(\begin{array}{ccc}
e_{11} & e_{12} & e_{13} \\
0 & 0 & 0 \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{13}} & \frac{e_{12}\left(1-e_{11}\right)}{e_{13}} & 1-e_{11}
\end{array}\right) \text { or } E=\left(\begin{array}{ccc}
e_{11} & e_{12} & e_{13} \\
0 & 1 & 0 \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{13}} & -\frac{e_{11} e_{12}}{e_{13}} & 1-e_{11}
\end{array}\right) .
$$

Similarly, suppose that $e_{13}=0$ and $e_{12} \neq 0$. We obtain that

$$
E=\left(\begin{array}{ccc}
e_{11} & e_{12} & 0 \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{12}} & 1-e_{11} & 0 \\
\frac{e_{11} e_{32}}{e_{12}} & e_{32} & 0
\end{array}\right) \text { or } E=\left(\begin{array}{ccc}
e_{11} & e_{12} & 0 \\
\frac{e_{11}\left(1-e_{11}\right)}{e_{12}} & 1-e_{11} & 0 \\
-\frac{e_{32}\left(1-e_{11}\right)}{e_{12}} & e_{32} & 1
\end{array}\right)
$$

Similarly, suppose that $e_{13}=0$ and $e_{23} \neq 0$. We obtain that

$$
E=\left(\begin{array}{ccc}
0 & 0 & 0 \\
e_{21} & 1-e_{33} & e_{23} \\
\frac{e_{21} e_{33}}{e_{23}} & \frac{e_{33}\left(1-e_{33}\right)}{e_{23}} & e_{33}
\end{array}\right) \text { or } E=\left(\begin{array}{ccc}
1 & 0 & 0 \\
e_{21} & 1-e_{33} & e_{23} \\
-\frac{e_{21}\left(1-e_{33}\right)}{e_{23}} & \frac{e_{33}\left(1-e_{33}\right)}{e_{23}} & e_{33}
\end{array}\right)
$$

Now, suppose that $e_{13}=0, e_{12}=0$ and $e_{23}=0$. Replacing them in (1) yields $e_{11}{ }^{2}=e_{11}$, that is $e_{11}=0$ or $e_{11}=1$. Replacing them in (5) yields $e_{22}{ }^{2}=e_{22}$, that is $e_{22}=0$ or $e_{22}=1$. Replacing them in (9) yields $e_{33}{ }^{2}=e_{33}$, that is $e_{33}=0$ or $e_{33}=1$. Therefore,
$E=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}1 & 0 & 0 \\ e_{21} & 0 & 0 \\ e_{31} & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & 0 & 0 \\ e_{21} & 1 & 0 \\ e_{21} e_{32} & e_{32} & 1\end{array}\right),\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ e_{31} & e_{32} & 0\end{array}\right),\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ e_{31} & e_{32} & 1\end{array}\right),\left(\begin{array}{ccc}1 & 0 & 0 \\ e_{21} & 0 & 0 \\ -e_{21} e_{32} & e_{32} & 1\end{array}\right),\left(\begin{array}{ccc}0 & 0 & 0 \\ e_{21} & 1 & 0 \\ e_{31} & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Finally, suppose that $e_{13} \neq 0, e_{12} \neq 0$ and $e_{23} \neq 0$. The matrix is not idempotent.
Conversely, it is easy to check that if E is any one of those matrices in the statement then E is idempotent. This completes the proof.

Now, we shall discuss a necessary and sufficient condition of a matrix $A \in M_{3}(\mathbb{Z})$ to be 1 -clean. From Lemma 1 , we can conclude that $\operatorname{det} E=1$ if and only if $E=I$. Therefore, A is 1 -clean if and only if $A-I$ is a unit.
Theorem 2. A is 1 -clean if and only if $\operatorname{det} A+\operatorname{tr} A-M_{11}-M_{12}-M_{13}=0$ or 2 .
Proof. Since $\operatorname{det} U \cdot \operatorname{det} U^{-1}=\operatorname{det}\left(U U^{-1}\right)=\operatorname{det} I=1$ and $\operatorname{det} U, \operatorname{det} U^{-1}$ must be integers, then $\operatorname{det} U= \pm 1$. Therefore,

$$
\begin{array}{r}
A \text { is } 1 \text {-clean } \quad \Leftrightarrow A-I=U \\
\Leftrightarrow \operatorname{det}(A-I)=\operatorname{det} U
\end{array}
$$

$$
\Leftrightarrow\left|\begin{array}{ccc}
a_{11}-1 & a_{12} & a_{13} \\
a_{21} & a_{22}-1 & a_{23} \\
a_{31} & a_{32} & a_{33}-1
\end{array}\right|= \pm 1
$$

$$
\Leftrightarrow a_{11} a_{22} a_{33}-a_{11} a_{33}-a_{33} a_{22}+a_{33}-a_{12} a_{22}+a_{11}+a_{22}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}
$$

$$
-a_{31} a_{13} a_{22}+a_{13} a_{31}-a_{32} a_{23} a_{11}+a_{23} a_{32}-a_{21} a_{12} a_{33}+a_{21} a_{12}-1=1 \text { or }-1
$$

$$
\Leftrightarrow a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{31} a_{13} a_{22}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}+a_{11}
$$

$$
+a_{22}+a_{33}-\left(a_{22} a_{33}-a_{32} a_{23}\right)-\left(a_{11} a_{33}-a_{31} a_{13}\right)-\left(a_{12} a_{22}-a_{12} a_{21}\right)=0 \text { or } 2
$$

$$
\Leftrightarrow \operatorname{det} A+\operatorname{tr} A-M_{11}-M_{12}-M_{13}=0 \text { or } 2
$$

Example 3. Consider the matrix $A=\left(\begin{array}{ccc}2 & -2 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right)$. We can see that $A=E+U$, where $E=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $U=\left(\begin{array}{ccc}1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Since $\operatorname{det} E=1, A$ is 1 -clean.
An easier way is to check that

$$
\operatorname{det} A+\operatorname{tr} A-M_{11}-M_{22}-M_{33}=0+4-0-4=0
$$

By Theorem 3, A is 1 -clean.
Next, we will consider the case that $\operatorname{det} E=0$. From Lemma 1, there are 15 cases that $\operatorname{det} E=0$, but we will consider here just some of them because the results for the other cases are similar.
Theorem 4. (i) If $E=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ then $A-E$ is a unit $\Leftrightarrow A$ is a unit.
(ii) If $E=\left(\begin{array}{lll}1 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ then $A-E$ is a unit $\Leftrightarrow \operatorname{det} A-M_{11}-M_{13} x= \pm 1$.
(iii) If $E=\left(\begin{array}{lll}0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ then $A-E$ is a unit $\Leftrightarrow \operatorname{det} A-M_{33}-M_{13} x= \pm 1$.
(iv) If $E=\left(\begin{array}{lll}1 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ then $A-E$ is a unit $\Leftrightarrow \operatorname{det} A-M_{11}+M_{12} x= \pm 1$.
(v) If $E=\left(\begin{array}{lll}0 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ then $A-E$ is a unit $\Leftrightarrow \operatorname{det} A-M_{22}+M_{12} x= \pm 1$.
(vi) If $E=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & x \\ 0 & 0 & 1\end{array}\right)$ then $A-E$ is a unit $\Leftrightarrow \operatorname{det} A-M_{33}+M_{23} x= \pm 1$.
(vii) If $E=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & x \\ 0 & 0 & 0\end{array}\right)$ then $A-E$ is a unit $\Leftrightarrow \operatorname{det} A-M_{22}+M_{23} x= \pm 1$.

Proof. (i) Obvious.
(ii) Let $E=\left(\begin{array}{lll}1 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Then
$A-E$ is a unit $\quad \Leftrightarrow A-E=U$

$$
\begin{aligned}
\Leftrightarrow & \operatorname{det}(A-E)=\operatorname{det} U \\
\Leftrightarrow & \left|\begin{array}{ccc}
a_{11}-1 & a_{12} & a_{13}-x \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|= \pm 1 \\
\Leftrightarrow & a_{11} a_{22} a_{33}-a_{22} a_{33}+a_{11} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{12} a_{32} x-a_{31} a_{22} a_{13}+a_{31} a_{22} x \\
& -a_{32} a_{23} a_{11}+a_{32} a_{23}-a_{33} a_{21} a_{12}= \pm 1 \\
\Leftrightarrow & a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{31} a_{13} a_{22}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}+a_{32} a_{23} \\
& -a_{22} a_{33}+\left(a_{31} a_{22}-a_{21} a_{32}\right) x= \pm 1 \\
\Leftrightarrow & \operatorname{det} A-M_{11}-M_{13} x= \pm 1 .
\end{aligned}
$$

The proofs of (iii), (iv), (v), (vi), and (vii) are similar to the proof of (ii).
Theorem 5. Let $E=\left(\begin{array}{ccc}x & y & z \\ 0 & 0 & 0 \\ \frac{x(1-x)}{z} & \frac{y(1-x)}{z} & 1-x\end{array}\right) \in M_{3}(\mathbb{Z})$ with $z \neq 0, z \mid x(1-x)$ and $z \mid y(1-x)$. Then $\operatorname{det} E=0$. Moreover, $A-E$ is a unit if and only if one of the following Diophantine equations
(i) $M_{31} x^{2}-M_{13} z^{2}-M_{32} x y+\left(M_{33}+M_{11}\right) x z+M_{12} y z-M_{31} x+M_{32} y+\left(\operatorname{det} A-M_{33}+1\right) z=0$
(ii) $M_{31} x^{2}-M_{13} z^{2}-M_{32} x y+\left(M_{33}+M_{11}\right) x z+M_{12} y z-M_{31} x+M_{32} y+\left(\operatorname{det} A-M_{33}-1\right) z=0$
has (x, y, z) as a non-trivial solution.
Proof. Let $E=\left(\begin{array}{ccc}x & y & z \\ 0 & 0 & 0 \\ \frac{x(1-x)}{z} & \frac{y(1-x)}{z} & 1-x\end{array}\right)$. It is clear that $\operatorname{det} E=0$. Moreover,

$$
\begin{aligned}
& A-E \text { is a unit } \quad \Leftrightarrow A-E=U \\
& \Leftrightarrow \operatorname{det}(A-E)=\operatorname{det} U \\
& \Leftrightarrow\left|\begin{array}{ccc}
a_{11}-x & a_{12}-y & a_{13}-z \\
a_{21} & a_{22} & a_{23} \\
a_{31}-\frac{x(1-x)}{z} & a_{32}-\frac{y(1-x)}{z} & a_{33}-(1-x)
\end{array}\right|= \pm 1
\end{aligned}
$$

$$
\begin{aligned}
\Leftrightarrow & a_{11} a_{22} x-a_{22} a_{33} x+a_{23} a_{32} x-a_{12} a_{21} x-a_{23} a_{31} y+a_{21} a_{33} y-a_{21} a_{32} z+a_{22} a_{31} z-a_{23} a_{12} \frac{x}{z} \\
& +a_{23} a_{12} \frac{x^{2}}{z}-a_{21} a_{13} \frac{y}{z}+a_{21} a_{13} \frac{x y}{z}+a_{23} a_{11} \frac{y}{z}-a_{23} a_{11} \frac{x y}{z}+a_{22} a_{13} \frac{x}{z}-a_{22} a_{13} \frac{x^{2}}{z}+a_{12} a_{21} \\
& -a_{11} a_{22}+a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{31} a_{13} a_{22}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12} \pm 1=0 \\
\Leftrightarrow & \left(a_{11} a_{22}-a_{12} a_{21}\right) x z+\left(a_{23} a_{32}-a_{22} a_{33}\right) x z+\left(a_{21} a_{33}-a_{23} a_{31}\right) y z+\left(a_{22} a_{31}-a_{21} a_{32}\right) z^{2} \\
& +\left(a_{22} a_{13}-a_{23} a_{12}\right)\left(x-x^{2}\right)+\left(a_{23} a_{11}-a_{21} a_{13}\right)(y-x y) \\
& +\left(a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{31} a_{13} a_{22}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}\right) z \\
& +\left(a_{12} a_{21}-a_{11} a_{22}\right) z \pm z=0 \\
\Leftrightarrow & M_{31} x^{2}-M_{13} z^{2}-M_{32} x y+\left(M_{33}+M_{11}\right) x z+M_{12} y z-M_{31} x+M_{32} y+\left(\operatorname{det} A-M_{33} \pm 1\right) z=0 .
\end{aligned}
$$

Theorem 6. A matrix $A \in M_{3}(\mathbb{Z})$ is 0 -clean if and only if one of the following conditions is satisfied:
(i) A is a unit.
(ii) $\operatorname{det} A-M_{11}-M_{13} x= \pm 1$ for some x.
(iii) $\operatorname{det} A-M_{33}-M_{13} x= \pm 1$ for some x.
(iv) $\operatorname{det} A-M_{11}+M_{12} x= \pm 1$ for some x.
(v) $\operatorname{det} A-M_{22}+M_{12} x= \pm 1$ for some x.
(vi) $\operatorname{det} A-M_{33}+M_{23} x= \pm 1$ for some x.
(vii) $\operatorname{det} A-M_{22}+M_{23} x= \pm 1$ for some x.
(viii) The Diophantine equation

$$
M_{31} x^{2}-M_{13} z^{2}-M_{32} x y+\left(M_{33}+M_{11}\right) x z+M_{12} y z-M_{31} x+M_{32} y+\left(\operatorname{det} A-M_{33}+1\right) z=0
$$

has a non-trivial solution.
(ix) The Diophantine equation

$$
M_{31} x^{2}-M_{13} z^{2}-M_{32} x y+\left(M_{33}+M_{11}\right) x z+M_{12} y z-M_{31} x+M_{32} y+\left(\operatorname{det} A-M_{33}-1\right) z=0
$$

has a non-trivial solution.
Proof. Conditions (i) to (vii) in Theorem 4 are precisely conditions (i) to (vii) in Theorem 6. In addition, conditions (viii) and (ix) in Theorem 6 are obtained from Theorem 5.

Example 7. Consider the matrix $A=\left(\begin{array}{ccc}2 & 0 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right)$. We can see that $A=E+U$, where $E=\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $U=\left(\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right)$.
Since $\operatorname{det} E=0, A$ is 0 -clean.
An easier way is to put $x=-2$ and check that

$$
\operatorname{det} A-M_{11}-M_{13} x=2-1-0(-2)=1
$$

By Theorem 6 (ii), A is 0 -clean.
Corollary 8. Let $E=\left(\begin{array}{lll}0 & y & z \\ 0 & 0 & 0 \\ 0 & \frac{y}{z} & 1\end{array}\right) \in M_{3}(\mathbb{Z})$ with $z \neq 0$ and $z \mid y$. Then $\operatorname{det} E=0$. Moreover, $A-E$ is a unit if and only if one of the following Diophantine equations
(i) $-M_{13} z^{2}+M_{12} y z+M_{32} y+\left(\operatorname{det} A-M_{33}+1\right) z=0$
(ii) $-M_{13} z^{2}+M_{12} y z+M_{32} y+\left(\operatorname{det} A-M_{33}-1\right) z=0$
has (x, y, z) as a non-trivial solution.
Proof. It follows from Theorem 5 by replacing $x=0$.

Corollary 9. Let $E=\left(\begin{array}{ccc}x & 0 & z \\ 0 & 0 & 0 \\ \frac{x(1-x)}{z} & 0 & 1-x\end{array}\right) \in M_{3}(\mathbb{Z})$ with $z \neq 0$ and $z \mid x(1-x)$. Then $\operatorname{det} E=0$. Moreover, $A-E$ is a unit if and only if one of the following Diophantine equations
(i) $M_{31} x^{2}-M_{13} z^{2}+\left(M_{33}+M_{11}\right) x z-M_{31} x+\left(\operatorname{det} A-M_{33}+1\right) z=0$
(ii) $M_{31} x^{2}-M_{13} z^{2}+\left(M_{33}+M_{11}\right) x z-M_{31} x+\left(\operatorname{det} A-M_{33}-1\right) z=0$
has (x, y, z) as a non-trivial solution.
Proof. It follows from Theorem 5 by replacing $y=0$.
Corollary 10. Let $E=\left(\begin{array}{lll}0 & 0 & z \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \in M_{3}(\mathbb{Z})$ with $z \neq 0, z \mid x(1-x)$ and $z \mid y(1-x)$. Then $\operatorname{det} E=0$. Moreover, $A-E$ is a unit if and only if one of the following Diophantine equations
(i) $-M_{13} z^{2}+\left(\operatorname{det} A-M_{33}+1\right) z=0$
(ii) $-M_{13} z^{2}+\left(\operatorname{det} A-M_{33}-1\right) z=0$
has (x, y, z) as a non-trivial solution.
Proof. It follows from Theorem 5 by replacing $x=y=0$.

Conclusion

In this work, we aim to determine the cleanness of a matrix $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right) \in M_{3}(\mathbb{Z})$. Firstly, Lemma 1 gives us all idempotent matrices E in $M_{3}(\mathbb{Z})$. Secondly, the condition to be 1 -clean is given in Theorem 2. After that, we study the
conditions that $A-E$ is a unit for several matrices E in Theorem 4, and also study the relation between clean matrices and the existence of solutions of some Diophantine equations in Theorem 5. Finally, we derive Theorem 6 as our main result. It shows us the condition to be 0 -clean, which involve that $A-E$ is a unit and the existence of non-trivial solutions of the following Diophantine equations of degree 2 in three variables:

$$
M_{31} x^{2}-M_{13} z^{2}-M_{32} x y+\left(M_{33}+M_{11}\right) x z+M_{12} y z-M_{31} x+M_{32} y+\left(\operatorname{det} A-M_{33} \pm 1\right) z=0
$$

where $M_{i j}$ s are minors of A.
The Diophantine equations derived here are more complicated than and cannot be reduced to those derived in [3].

References

Chen, H. (2009). Clean matrices over commutative rings. Czechoslovak Mathematical Journal, 59(134), 145-158.

Khurana, D. \& Lam, T. Y. (2004). Clean matrices and unitregular matrices. Journal of Algebra, 280, 683-698.

Rajeswari, K. N. \& Aziz, R. (2009). A note on clean matrices in $M_{2}(\mathbb{Z})$. International Journal of Algebra, 3(5), 241-248.

