

วณานุรัตน์ ศรีจำพันธุ์¹, เรืองเดช ธงศรี², ธัญพร ยอดแก้ว², นาตยา ต่อแสงธรรม², มนภาส มรกฎจินดา², รุ่งทิพย์ กระต่ายทอง² และอัมพร เวียงมูล^{1*}

Relationship between Microstructure and Mechanical Property

of Sintered Fe-Cr-Mo Steels

Wananurat Srijampan¹, Ruangdaj Tongsri², Thanyaporn Yotkaew², Nattaya Torsangthum², Monnapas Morakotjinda², Rungtip Krataitong² and Amporn Wiengmoon^{1*}

¹ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร พิษณุโลก 65000 ²หน่วยวิจัยและพัฒนาโลหะวิทยาผง ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ ปทุมธานี10120 ¹Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 ²Powder Metallurgy Research and Development Unit, National Metal and Materials Technology Center, PathumThani 12120 ³Corresponding author. E-mail address: ampornw@nu.ac.th

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์ เพื่อศึกษาผลของคาร์บอนและอัตราการเย็นตัวต่อโครงสร้างจุลภาคและสมบัติในเหล็กกล้า Fe-3.0wt.%Cr-0.5wt.%Mo-0.01wt.%C ที่เติมคาร์บอนในปริมาณ 0.2 และ 0.3wt.%C โดยนำผงโลหะมาอัดขึ้นรูปที่อุณหภูมิห้องให้มี ความหนาแน่น 6.5 g/cm³และซินเตอริ่งที่อุณหภูมิ 1280°C ในเตาสุญญากาศ ทำให้เย็นตัวด้วยกาซไนโตรเจนที่อัตรา0.1 และ 4.0°C/s ศึกษาโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์แสงและกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด ศึกษาชนิดเฟสด้วยเทคนิคการเลี้ยวเบน ของรังสีเอ็กซ์ทดสอบความแข็งและทดสอบแรงดึง จากการศึกษาพบว่าเมื่อให้อัตราการเย็นตัว 0.1°C/s ซิ้นงานที่เติมคาร์บอน 0.2% มีโครงสร้างจุลภาคเป็น polygonal ferrite (PF) ส่วนชิ้นงานที่เติมคาร์บอน 0.3wt.% ประกอบด้วย PF และเบนไนต์เมื่ออัตรา การเย็นตัวเพิ่มขึ้นเป็น 4.0°C/s มีโครงสร้างเป็นเบนไนต์ มาร์เทนไซนต์และออสเทนไนต์บางส่วนความแข็งและความต้านทานแรงดึง สูงสุดของชิ้นงานที่เติมคาร์บอน 0.2 และ 0.3% ที่อัตราการเย็นตัว 0.1°C/s มีค่าเป็น 106.7 HV0.1, 127.3 HV0.1 และ 205.3 MPa, 565.5 MPa ตามลำดับเมื่ออัตราการเย็นตัวเป็น 4.0°C/s จะมีค่าเพิ่มขึ้นเป็น 304.5 HV0.1, 436.1 HV0.1 และ 470.4 MPa, 700.2 MPa ตามลำดับ

คำสำคัญ: เหล็กกล้า Fe-Cr-Mo โครงสร้างจุลภาค สมบัติทางกล อัตราการเย็นตัว

Abstract

In this work, the effect of carbon content and cooling rate on microstructure and mechanical property of the Fe-3.0wt.%Cr-0.5wt.%Mo-0.01wt.%C steel was investigated. The pre-alloyed powder was mixed with 0.2 and 0.3wt.%C. The powder mixtures were compacted with hydraulic compactor at room temperature to green density of 6.5 g/cm³. The green compact were sintered at 1280 °C in vacuum furnace and cooled by nitrogen gas with cooling rate of 0.1 and 4.0°C/s. It was found that the microstructure of 0.2wt.%C sintered steel at cooling rate of 0.1°C/sconsisted of polygonal ferrite (PF). The steelcontaining 0.3wt.%C, the microstructure consisted of PF and bainite. At higher cooling rate of 4.0°C/s, bainite, martensite and some retained austenite (γ) were found in both steels. The Vickers microhardness and ultimate tensile strength of the steels containing 0.2 and 0.3wt.%C with cooling rate of 0.1°C/s were 106.7 HV0.1, 127.3 HV0.1 and 205.3 MPa, 565.5 MPa, respectively. At cooling rate of 4.0°C/s, Vickers microhardness and ultimate tensile strength were increased up to 304.5 HV0.1, 436.1 HV0.1 and 470.4 MPa, 700.2 MPa, respectively.

Keywords: Fe-Cr-Mo steel, Microstructure, Mechanical Property, Coolingrate

บทนำ

กรรมวิธีโลหะผงเป็นวิธีการผลิตวัสดุหรือชิ้นส่วนจากผง โลหะ โดยการนำผงโลหะไปอัดขึ้นรูปและนำไป ซินเตอริ่ง กรรมวิธีโลหะผงเข้ามามีบทบาททดแทนการขึ้น รูปแบบดั้งเดิม เนื่องด้วยสามารถผลิตชิ้นส่วนที่มีรูปร่าง ชับซ้อนได้ มีน้ำหนักเบา มีความแม่นยำของรูปร่างและยัง ประหยัดวัตถุดิบหรือผงตั้งต้น (นภิสพร มีมงคล, 2548)

Astaloy CrM มักใช้เป็นผงโลหะเริ่มต้น (Pre-alloyed) ที่มีส่วนผสมประกอบด้วยธาตุเหล็ก โครเมียม 3wt.% โมลิบดินัม 0.5wt.% และคาร์บอน 0.01wt.% ผลิตด้วย ้วิธีการอะตอมไมเซชันด้วยน้ำ ทำให้ผงโลหะมีความเป็น เนื้อเดียวกัน สามารถทำการอัดขึ้นรูปและชุบแข็งได้ดี (Höganäs, 2015) จากการวิจัยที่ผ่านมาพบว่าโครงสร้าง จุลภาคและสมบัติทางกลของเหล็กกล้า Astaloy CrM ขึ้นกับการเติมธาตุ เช่น คาร์บอน อุณหภูมิซินเตอริ่งและ อัตราการเย็นตัว ในปี 2000 Yu พบว่าเหล็กกล้า Astaloy CrM ที่เติมคาร์บอน 0.3-0.5wt.% เมื่อปล่อยให้เย็นตัว ปกติภายในเตาจะมีโครงสร้างจุลภาคประกอบด้วย เบนไนต์และเฟอร์ไรท์ ซึ่งเบนไนต์จะเพิ่มขึ้นเมื่อปริมาณ คาร์บอนเพิ่มขึ้น Lindberg, Johansson, and Maroli (2000) ได้เติมคาร์บอน 0.4wt.% ใน Astaloy CrM อัด ขึ้นรูปร้อนและซินเตอริ่งที่ 1120°C พบว่ามีความแข็ง เพิ่มสูงถึง 450 HV10 มีความแข็งแรงสูงมากถึง 850 MPa นอกจากนี้ Lewenhagen (2000) (Dlapka, Danninger, Gierl, & Lindqvist, 2010; Sulowaski & Cias, 2011) พบว่าเหล็กกล้า Astaloy CrM ที่เติมคาร์บอน 0.3, 0.5, 0.7wt.% เมื่อนำมาซินเตอริ่งอุณหภูมิ 1250°C จะส่งผล ให้เหล็กกล้ามีความแข็งและความต้านทานแรงดึงสูงกว่า การซินเตอริ่งที่อุณหภูมิ 1120°C แต่ความเหนียวจะ ูลดลง นอกจากนี้ยังพบว่าการปรับเปลี่ยนอัตราการเย็น

ตัวหลังการซินเตอริ่งจะส่งผลให้เกิดโครงสร้างจุลภาคที่ แตกต่างกันไป โดยที่อัตราการเย็นตัวเร็วจะส่งผลให้เกิด โครงสร้างมาร์เทนไซต์ทำให้ความแข็งและความต้านทาน แรงดึงสูง เมื่ออัตราการเย็นตัวต่ำส่งผลให้เกิดโครงสร้าง เบนไนต์ เพิร์ลไลท์และเฟอร์ไรท์ ซึ่งความแข็งและความ ต้านทานแรงดึงจะลดลง (Dobrzański & Musztyfaga, 2009; Moghaddam Farhangi, Ghambari, & Solimanjad, 2012; Moghaddam & Solimanjad, 2013) อย่างไรก็ ตามพบว่างานวิจัยที่ผ่านมักจะมุ่งเน้นไปที่การเติมคาร์บอน ในปริมาณที่มากกว่า 0.3 wt% และอัตราเย็นตัว 1.0-7.0°C/s ดังนั้นในงานวิจัยนี้มีจุดประสงค์เพื่อศึกษาผล ของคาร์บอนในปริมาณ 0.2 และ 0.3 wt.% ที่มีอัตราการ เย็นตัวต่ำและปานกลาง

วิธีการศึกษาและวัสดุอุปกรณ์

1. การเตรียมชิ้นงาน

ชิ้นงานในการทดลองเตรียมโดยการนำโลหะผง Astaloy CrM (3.0wt.%Cr-0.5wt.%Mo-0.01wt.%C) มา ผสมกับคาร์บอนในรูปของกราไฟต์ในปริมาณ 0.2 และ 0.3wt.% และสารหล่อลื่น zinc stearate (ZnSt)ใน ปริมาณ 1wt.% ในเครื่องผสมสารเป็นเวลา 45 นาที จากนั้นนำผงโลหะที่ผสมแล้วไปอัดขึ้นรูปด้วยเครื่องอัด ไฮโดรลิกด้วยแรงอัด 400 MPa เป็นชิ้นงานสำหรับ ทดสอบแรงดึงตามมาตรฐาน MPIF Standard 10 ให้มี ความหนาแน่น (green density) 6.5 g/cm³ จากนั้น นำไปซินเตอริ่งที่อุณหภูมิ 1280°C เป็นเวลา 45 นาที ใน สุญญากาศและปล่อยให้เย็นตัวถึงอุณหภูมิห้องภายใต้ อัตราการเย็นตัว 0.1 และ 4.0°C/s โดยการอัดก๊าซ ไนโตรเจนขั้นตอนการเตรียมชิ้นงานแสดงดังรูปที่ 1 ตัวอย่างที่ผ่านการซินเตอริ่ง แสดงในรูปที่ 2

รูปที่ 1แผนภาพแสดงขั้นตอนการซินเตอริ่งและการเย็นตัว

Naresuan University Journal: Science and Technology 2016; 24(2)

รูปที่ 2ตัวอย่างชิ้นงานหลังการซินเตอริ่ง

2. ศึกษาชนิดเฟสและโครงสร้างจุลภาค

การเตรียมชิ้นงานเพื่อศึกษาชนิดเฟสด้วยเครื่อง ทดสอบการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) โดยนำชิ้นงานที่ ผ่านการซินเตอริ่งมาตัดและขัดหยาบด้วยกระดาษทราย เบอร์ 180, 240, 320, 600 และ 1000 ตามลำดับและ ขัดละเอียดบนผ้าสักหลาดด้วยผงขัดเพชรขนาด 6, 3 และ 1 ไมครอน จากนั้นนำไปทดสอบด้วยเทคนิคการ เลี้ยวเบนของรังสีเอ็กซ์ยี่ห้อ Rigaku รุ่น TTRAX III

การศึกษาโครงสร้างจุลภาคด้วยกล้องจุลทรรศน์ แสงและกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดโดย นำชิ้นงานที่ขัดละเอียดมากัดด้วยกรด 2 ชนิด 1) Nital 5% เพื่อศึกษาโครงสร้างโดยรวม 2) การย้อมสีด้วยกรด Picric5 g + Ethanal 100 ml เป็นเวลา 20 วินาที และ ตามด้วย กรด $Na_2S_2O_5$ 10 g + น้ำกลั่น 100 ml เพื่อ แยกแยะระหว่างเบนไนต์ มาร์เทนไซต์และออสเทนไนต์

3. การทดสอบสมบัติทางกล

สมบัติทางกลของเหล็กกล้าได้ทำการทดสอบ ความแข็งไมโครแบบวิกเกอร์ โดยใช้น้ำหนัก 100 กรัม เป็นเวลา 10 วินาที ชิ้นงานละ 10 จุด และหาค่าเฉลี่ย และทำการทดสอบแรงดึง (Tensile test) ด้วยเครื่อง Instron Universal Instrument ทดสอบตามมาตรฐาน MPIF Standard 42 ทดสอบตัวอย่างละ 3 ชิ้น และนำมา หาค่าเฉลี่ย

ผลการศึกษาและอภิปรายผลการศึกษา

1. โครงสร้างจุลภาค

จากการศึกษาโครงสร้างจลภาคด้วยกล้อง จุลทรรศน์แสงพบว่าเมื่ออัตราการเย็นตัวเป็น 0.1°C/s เหล็กกล้า Astaloy CrM ที่มีปริมาณคาร์บอน 0.2wt.% หลังการกัดกรดด้วย Nital 5% ดังรูปที่ 3(ก-ข) พบว่ามี โครงสร้างเป็น polygonal ferrite (PF) ส่วนชิ้นงานที่มี คาร์บอน 0.3wt.% มีโครงสร้างจุลภาคแบบ dual phase ที่ประกอบด้วย PF และเบนไนต์ ซึ่งเป็นโครงสร้างของ เฟอร์ไรท์และซีเมนไตต์ (Fe_sC) ดังรปที่ 3(ค-ง) เมื่อ อัตราการเย็นตัวเพิ่มขึ้นเป็น 4.0°C/s ชิ้นงานที่เติม คาร์บอน 0.2 และ 0.3wt.% มีโครงสร้างประกอบด้วย เบนไนต์มาร์เทนไซต์ และออสเทนไนต์ตกค้าง เมื่อทำ การกัดกรดย้อมสีโครงสร้าง (color etching) ทำให้ สามารถแยกเฟสเบนในต์และมาร์เทนไซต์ได้ ซึ่งจะ สามารถเห็นโครงสร้างของเบนไนต์เป็นสีฟ้า ส่วนมาร์เทน ไซต์เป็นสีน้ำตาล และออสเทนไนต์เป็นสีขาว ดังรูปที่ 3 (จ-ช) ซึ่งจะเห็นว่าเมื่อปริมาณคาร์บอนเพิ่มขึ้นเป็น 0.3wt.% ปริมาณเฟสมาเทนไซต์ (สีน้ำตาล) จะเพิ่มขึ้น เมื่อเทียบกับเหล็กกล้าที่มีคาร์บอน 0.2wt.% รูปที่ 4 แสดงโครงสร้างของเบนไนต์ที่กำลังขยายสูงจะเห็น ลักษณะของเฟอร์ไรท์ที่มีรูปร่างเป็นแผ่นแหลมและโตเข้า ไปในเกรนจากผลการทดลองสอดคล้องกับงานวิจัยของ Yu ซึ่งได้ศึกษา Astaloy CrM ที่เติมคาร์บอน 0.3 และ 0.4wt.% ที่อัตราการเย็นตัว 0.1-0.25°C/s พบว่า โครงสร้างจุลภาคประกอบด้วยเฟอร์ไรท์และเบนไนต์ และที่อัตราการเย็นตัว 2-5°C/s มีโครงสร้างเป็น เบนไนต์และมาร์เทนไซต์

Naresuan University Journal: Science and Technology 2016; 24(2)

รูปที่ 3 ผลของคาร์บอนและอัตราการเย็นตัวต่อโครงสร้างจุลภาคของ Astaloy CrM หลังการกัดด้วยกรด 5% Nital และ Picral 5% และ Na₂S₂O₅10%

178

Naresuan University Journal: Science and Technology 2016; 24(2)

รูปที่ 4 ภาพถ่ายด้วยกล้องจุลทรรศน์แสงและกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของ Astaloy CrM ที่มีปริมาณคาร์บอน 0.3%C ที่อัตราการเย็นตัวต่างกัน (ก-ข) 0.1°C/s (ค-ง) 4.0°C/s

 การศึกษาชนิดเฟสด้วยเทคนิคการเลี้ยวเบน ของรังสีเอ็กซ์

จากผลการศึกษาด้วย XRD พบว่าที่อัตราการเย็น ตัว 0.1°C/s จะประกอบด้วยพีคของเฟอร์ไรท์ทั้งหมด เมื่ออัตราการเย็นตัวเพิ่มขึ้นเป็น 4.0°C/s จะพบเฟสของ เฟอร์ไรท์และออสเทนไนต์ตกค้าง (รูปที่ 5) อย่างไรก็ ตามไม่พบพีคของซีเมนไตต์และมาเทนไซท์ ทั้งนี้อาจ เนื่องมาจากเฟสทั้งสองมีปริมาณต่ำจนไม่สามารถตรวจ พบด้วยเทคนิคนี้ซึ่งสอดคล้องกับโครงสร้างจุลภาคในรูป ที่ 3 ที่พบเฟสของเบนไนท์ (สีฟ้า) มากกว่ามาเทนไซท์ (สีน้ำตาล)การเกิดเฟสออสเทนไนต์ตกค้างเมื่ออัตราการ เย็นตัวสูง เนื่องจากโครงสร้างออสเทนไนต์ไม่สามารถ เปลี่ยนเป็นเฟอร์ไรท์เบนไนท์ หรือมาเทนไซท์ได้ทั้งหมด ทำให้ยังคงมีออสเทนไนต์ตกค้าง

Naresuan University Journal: Science and Technology 2016; 24(2)

รูปที่ 5รูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ของAstaloyCrMที่ปริมาณคาร์บอนต่างกันและอัตราเย็นตัวต่างกัน (ก) 0.2wt.%C, 0.1°C/s (ข) 0.3wt.%C, 0.1°C/s (ค) 0.2wt.%C, 4.0°C/s (ง) 0.3wt.%C, 4.0°C/s

การทดสอบสมบัติทางกล

รูปที่ 6 แสดงสมบัติทางกลของเหล็กกล้าที่ ปริมาณคาร์บอนและอัตราการเย็นตัวต่างกันจากการ ทดสอบความแข็งจุลภาคแบบวิกเกอร์และทดสอบแรงดึง พบว่าที่อัตราการเย็นตัว 0.1[°]C/s เหล็กกล้า Astaloy CrM ที่เติมคาร์บอน 0.2% มีความแข็งความต้านทาน แรงดึงสูงสุด (ultimate tensile strength) ความต้านทาน แรงดึงจุดคราก (yield Strength) และเปอร์เซ็นต์การยืด ตัว (percent elongation) เป็น 106.7 HV0.1, 205.3 MPa, 123.8 MPa และ 8.42% ตามลำดับส่วน เหล็กกล้า Astaloy CrM ที่เติมคาร์บอน 0.3wt.% มีค่า เป็น 127.3 HV0.1, 565.5 MPa, 353.4 MPa และ 2.5% ตามลำดับ เมื่ออัตราการเย็นตัวเพิ่มขึ้นเป็น 4.0°C/s เหล็กกล้า Astaloy CrM ที่เติมคาร์บอน 0.2wt.% มีความแข็งความต้านทานแรงดึงสงสด ความ ต้านทานแรงดึงจุดคราก และเปอร์เซ็นต์การยืดตัว เป็น 304.5 HV0.1, 470.4 MPa, 294.8 MPa , 2.4% ตามลำดับ ส่วนเหล็กกล้า Astaloy CrM ที่เติมคาร์บอน 0.3wt.% มีค่าเป็น 436.1 HV0.1, 700.2 MPa,

374.5 MPa. 3.4% ตามลำดับ จากผลการทดลองจะ เห็นได้ว่าเมื่อปริมาณคาร์บอนและอัตราการเย็นตัว เพิ่มขึ้นเหล็กกล้าจะมีความแข็งและความต้านทานแรงดึง เพิ่มขึ้นส่วนเปอร์เซ็นต์การยืดตัวจะลดลง เนื่องจากมี โครงสร้างเป็นเบนไนต์และมาเทนไซท์ที่แข็ง ซึ่ง สอดคล้องกับงานวิจัยของ Sulowaski & Cias (2011; Moghaddamet al., 2012; Moghaddam & Solimanjad, 2013; Dobrzański & Musztyfaga, 2009) จาก การศึกษาผิวรอยแตกหลังทดสอบแรงดึงพบว่าชิ้นงานมี ลักษณะการแตกหักแบบเหนียวและแบบเปราะ โดย สังเกตจากลักษณะที่เป็นหลุมหรือรอยบุ๋ม (dimple) ซึ่ง แสดงถึงพฤติกรรมการแตกแบบเหนียว ส่วนการแตก แบบเปราะจะมีลักษณะการแตกแบบผ่าเกรนที่มีผิวเรียบ เป็นชั้นๆ (cleavage) แสดงดังรูปที่ 7 เมื่อปริมาณ คาร์บอนและอัตราการเย็นตัวเพิ่มขึ้นจะพบการแตกแบบ เปราะมากขึ้นเนื่องจากเหล็กกล้ามีโครงสร้างเป็นเบนไนต์ และมาร์เทนไซต์ที่แข็งนอกจากนี้ยังพบรอยแตก (crack) ในชิ้นงานอีกด้วย

ร**ูปที่ 6** ผลของคาร์บอนและอัตราการเย็นตัวต่อสมบัติทางกล (ก) ความแข็ง (ข) ความต้านทานแรงดึงสูงสุด (ค) ความต้านทานแรงดึงจุดคราก (ง) เปอร์เซ็นต์การยืดตัว

ร**ูปที่ 7** ผิวรอยแตกหลังการทดสอบแรงดึง (ก) 0.2wt.%C, 0.1°C/s (ข) 0.3wt.%C, 0.1°C/s (ค) 0.2wt.%C, 4.0°C/s (ง) 0.3wt.%C, 4.0°C/s

สรุปผลการศึกษาและข้อเสนอแนะ

 เหล็กกล้า Astaloy CrM ที่มีการเติมคาร์บอนใน ปริมาณ 0.2wt.% หลังการชินเตอริ่งและให้อัตราการเย็น ตัว 0.1°C/s มีโครงสร้างจุลภาคเป็น polygonal ferrite (PF) เมื่อเติมคาร์บอน 0.3wt.% จะมีโครงสร้างเป็น dual phase ซึ่งประกอบด้วย PF และเบนไนต์

 เมื่ออัตราการเย็นตัวเพิ่มขึ้นเป็น 4.0°C/s จะมี โครงสร้างเป็นเบนไนต์มาร์เทนไซต์และออสเทนไนต์ตกค้าง เหล็กกล้าที่มีคาร์บอน 0.3wt.% จะมีปริมาณโครงสร้างของ เบนไนต์ มาร์เทนไซต์และออสเทนไนต์ตกค้างเพิ่มขึ้น

 เมื่อปริมาณคาร์บอนและอัตราการเย็นตัวเพิ่มขึ้น ทำให้ความแข็งและความต้านทานแรงดึงเพิ่มขึ้น เนื่องจากการเกิดโครงสร้างของเบนไนท์และมาเทนไซท์

กิตติกรรมประกาศ

ผู้วิจัยขอขอบคุณโครงการทุนสถาบันบัณฑิตวิทยาศาสตร์ และเทคโนโลยีไทย (TGIST) ศูนย์เทคโนโลยีโลหะและวัสดุ แห่งชาติ (MTEC) และทุนวิจัยจากงบประมาณรายได้ มหาวิทยาลัยนเรศวรประจำปีงบประมาณ 2559 ที่สนับสนุน ทุนวิจัยและเครื่องมือในการทำวิจัยในครั้งนี้

เอกสารอ้างอิง

นภิสพร มีมงคล. (2548). *โลหะกรรมวัสดุผง Powder* Metallurgy. สงขลา: มหาวิทยาลัยสงขลานครินทร์. [1]

Lindberg, C., Johansson, B., & Maroli, B. (2000). Mechanical properties of warm compacted Astaloy CrM, Euro PM. In *Proceedings of an international conference held in Shrewsbury* (pp. 1–8). UK: Shrewsbury.

Höganäs, A. B. (2015). Handbook for Iron and Steel Powders: Hoganas Iron and Steel Powders for Sintered Components. Sweden: Helsingborg.

Lewenhagen, J. (2000). Chromium steel powders for components. *Mater. Sci. Forum*, 2000, 241–246.

Moghaddam, K. S., & Solimanjad, N.(2013). Effects of sinter hardening technology on homogeneous and heterogeneous microstructures. *Powder Metallurgy*, *56*, 245–250.

Dobrzański, L. A. & Musztyfaga, M. (2009). Effect of cooling rates on sinter-hardened steels. *Journal of Achievements in Materials and Manufacturing Engineering*, 37/2, 630-638.

Dobrzański, L. A. & Musztyfaga, M. (2009). Influence of cooling rates on properties of prealloyed PM materials. *Journal of Achievements in Materials and Manufacturing Engineering*, 37/1, 28–35.

Dlapka, M., Danninger, H., Gierl, Ch., & Lindqvist, B. (2010). Sinter hardening Cr-Mo prealloyed steels with sufficient toughness. Powder Metallurgy Progress, 10, 20-31.

Sulowaski, M., & Cias, A. (2011). The effect of sintering atmosphere on the structure and mechanical properties of sintered Fe-Mn-Cr-Mo-C structural steels, Powder Metall. In *Proceedings of an international conference held in Pune* (pp. 123–131). India: Pune.

Moghaddam, S., Farhangi, H., Ghambari, M., & Solimanjad, N. (2012). Effect of sinter hardening on mechanical properties of Astaloy CrM powder metallurgy steel. *Micro & Nano Letters*, 7, 955–958.

Yu, Y. (2000). Thermodynamic and kinetic behaviours of Astaloy CrM. Powder Metallurgy World Congress. In *Proceedings of an international conference held in Kyoto* (pp. 9–11). Japan: Kyoto.

Translated Thai Reference

Meemongkol, N. (2005). *Powder Metallurgy*. Songkhla: Songklanakarin University. [in Thai] [1]