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Abstract 

 Understanding characteristic of the airflow in a human respiratory tract is very important factor to treatment in the respiratory 

disease. In this paper, we propose a three-dimensional mathematical modelling for the airflow in a human oral cavity. The 

airflow is assumed to be axially symmetric flow and driven by the oscillating pressure gradient. The governing equations for 

describing the behavior of airflow are composed the Navier-Stokes equations and the continuity equation in a cylindrical 

coordinates system. To solve the model, we presented method of analytical solution for the airflow velocity. We obtained a 

solution in a Fourier-Bessel series form. Then, we simulated the airflow field on a three-dimensional geometry of the oral cavity 

area. The obtained results show that the characteristic of magnitude and direction of the airflow correspond to the fact of the 

airflow in human airway and the previous research works. 
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Introduction 

 

 In medical research, the aerosolized medicine is 

used to being the highly effective treatment for  

the respiratory disease because droplet particles are 

directly transported into the respiratory position. The 

droplet particles have also slight side effects. 

However, the success of the aerosolized treatment 

depends on the airflow behavior which is an 

important factor that transports droplet particles in 

respiratory position. The airflow is also determined 

trajectory and final location of the particles. 

Therefore, the characteristic of airflow and particle 

trajectory are studied extensively both in medical and 

mathematics. But the medical studies must take a lot 

of time and high-performance computers in the 

laboratory experiments, most of researchers use the 

mathematical model to describe the problem instead.   

 Since the air is one of fluids, a lot of researchers 

tend to express the airflow velocity by the Navier-

Stokes equations. There are many works that 

presented a numerical method for finding solution of 

these equations and simulate the airflow field 

especially in a human respiratory tract, such as the 

research of Wang, Denney, Morrison, and Vodyanoy 

(2005) presented a numerical simulation of airflow 

in the human nasal cavity with computational fluid 

dynamics software and Qingxing, Fong, and Chi-

Hwa (2009) studied the numerical solution of the 

Navier-Stokes equations for airflow and simulated 

particle trajectories in a human airway.   
 However, the numerical analysis is quite complex 

as well as using a high-performance computers, 

some researchers tried to solve of the Navier-Stokes 

equations by an analytical method for saving time and 

computing resources. We can see from some works, 

for instance, Tsangaris and Vlachakis (2003) 

presented an analytical solution for the fully 

developed laminar flow in duct of a cross-section of 

right-angled isosceles triangle. They have obtained 

solution in a Fourier series form. Otarod and Otarod 

(2006) studied an analytical solution for the two-

dimensional laminar incompressible flow. Mohyuddin 

Siddiqui, Hayat, Siddqui, & Asghar (2008) 
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presented the solutions of the Navier-Stokes 

equations governing the unsteady incompressible 

flow. The solutions have been obtained using 

Hodograph-Legendre transform method. Emin and 

Erdem (2009) showed an analytical solution of the 

Navier-Stokes equations governing for flow over a 

moving plate bounded by two side walls. 

Furthermore, Kongnuan and Pholuang (2012) 

proposed an analytical solution of the Navier-Stokes 

equations for the oscillating airflow in a human upper 

airway. Nevertheless, the analytical simulation for the 

three-dimensional model of the oscillating airflow in 

the human upper respiratory tract has never been 

presented.  
Due to we interest the problem of the oscillating 

airflow in a human upper airway in the research of 

Kongnuan and Pholuang (2012), we then to develop 

the two-dimensional human upper airway model of 

these research to the three-dimensional model for a 

more realistic geometry. For this work, we will show 

the three-dimensional model of a human upper 

respiratory tract including oral cavity until the end of 

trachea.     

We propose the mathematical model that the 

governing equations are described by the Navier-

Stokes equations and the continuity equation in 

cylindrical coordinates for axially symmetric case 

with suitable boundary conditions. Then we present 

the method of analytical solution for the airflow 

velocity. The airflow field is simulated in the oral 

cavity area. 

  

 Methodology and Solution 
 

Construction of Model 
 Because of the complex geometry of a human 

upper airway as shown in Figure 1(a), which is 

barrier to create a realistic domain and difficult to 

derive an analytical expression for the solution of the 

airflow, therefore, we look a three-dimensional 

airway in simple model that while the oral is opening 

wide, the inside of oral cavity seem like an ellipsoid 

tube shape and connect to trachea tube straight down. 

To simplify the simulation the airflow field on a 3D-

model, we consider the oscillating airflow in the 

human upper airway for the axially symmetric flow 

case. Here, the domain of our model is started from 

the beginning of the oral cavity to the end of the 

trachea in a human upper airway as shown in Figure 

1(b). The 3D-model generated from the parameters 

in Table 1 (Kongnuan & Pholuang, 2012).  

 

Table 1 Parameters of a human upper respiratory tract. 

Parameter Length (cm) 

The diameter of inlet (L1) 3.125 

The length of oral cavity (L2) 7.0 

The diameter of upper trachea (L3) 2.5 

The length of upper trachea (L4) 7.0 

The length of lower trachea (L5) 9.0 

The diameter of outlet (L6) 2.0 
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 (a)                                                                      (b) 

Figure 1  (a) The construction of a real human upper airway (Image source: Shier et al., Hole’s Essentials of 

 Human Anatomy and Physiology) and (b) 3D- human upper respiratory model. 
 

 For convenience to derive the analytical 

expression for the solution of the airflow velocity, 

we divide the domain of a upper airway into 4 

areas as shown in Figure 2. 

 

 
 

 

 

 

 

 

 
 

 

Figure 2 Division of the domain 

 
Governing equations and boundary conditions 
 In this paper, we simulate the problem of the 

airflow only the oral cavity area under the 

assumptions that the air is an incompressible 

Newtonian fluid which has constant viscosity and 

density. The airflow is assumed that there is no effect 

from any external force and it is driven by the 

oscillating pressure gradient within the pulmonary. 

Therefore, we can use the Navier -Stokes equations 

and the continuity equation to be the governing 

equations to describe the airflow in airway. 

 Hence, the governing equations for the three-

dimensional airflow model are composed the Navier-

Stokes equations and the continuity equation in 

cylindrical coordinates system. These equations are 



135 
 

Naresuan University Journal: Science and Technology 2016; 24(2) 

given in terms of velocity components , ,r xu u uφ in 

cylindrical coordinates 

 u ,r r x xu e u e u eφ φ= + +  
where ,re ,eφ xe  are standard unit vectors in radial, 

angular, and axial direction, respectively. 
 By assumption that the flow is axially symmetric, 

we search for the axially symmetric solution, the 

angular velocity component uφ set to zero. Then, the 

airflow velocity depends on only the radial 

direction r and the axial direction x . Therefore, the 

governing equations can be now written as follows 

form:   

 

                                                  xr
r

uu
u

r r x
∂∂

+ + =
∂ ∂

1 0   ,                                        (1)                                                                     

                           r r r r r r r
r x

u u u u u u upu u
t r x r r rr r x

 ∂ ∂ ∂ ∂ ∂ ∂∂   r + + = − + µ + − +   ∂ ∂ ∂ ∂ ∂∂ ∂   

2 2

2 2 2
1  ,                             (2)    

                              x x x x x x
r x

u u u u u upu u
t r x x r rr x

 ∂ ∂ ∂ ∂ ∂ ∂  ∂  r + + = − + µ + +   ∂ ∂ ∂ ∂ ∂∂ ∂   

2 2

2 2
1 ,                         (3)  

 
where xu is the axial component of the flow 

velocity, ru is the radial component of the flow 

velocity, p is the pressure, r and µ are the density 

and dynamic viscosity of the air, respectively.   
 The boundary conditions are described as follows: 

The non-slip boundary condition, u ( , ) ( , ),x ru u= = 0 0  

is assigned to the inner walls. The pressure at the 

inlet is zero, while the pressure at outlet is an 

oscillating function sine of time, 
( ) sin( ),p t P t= ω (Kongnuan & Pholuang, 2012) 

where P  is the amplitude of the oscillating pressure 

(Hranitz, 2009). 

 

 From equations (1)-(3) combine with the above 

boundary conditions, we now have a boundary value 

problem (BVP). Then we will find a solution of the 

BVP in the following section.    
The method of analytical solution 
 To find the analytical solution in cylindrical 

coordinates for the oscillating airflow conditions in 

area 1 (Figure 2), we firstly transform model of area 

1 which is in rectangular coordinates system ( , , )x y z  
into cylindrical coordinates system ( , )x r  as the following: 

 Since the model in area 1 is look like the elliptic 

tube, we can consider the ellipsoid equation that is 

 

                              ;x y z
a b c
′ ′ ′     + + =     

     

2 2 2
1   ,x x x′ = − 1  ,y y y′ = − 1  .z z z′ = − 1  

 
 

 This equation is transformed to cylindrical 

coordinates system by defining 

, cos , sinx x y r z r′ ′ ′ ′= = ϕ = ϕ  tan ( ),z
y

− ′
′ϕ = 1  and we let 

c b= , we then get this equation as the following new 

 

 form: ;x r
a b
′   + =   

   

2 2
1    ( ) ( ) .r y z′ ′= +2 2 2  

Now we obtain the model of area 1 in cylindrical 

coordinates as shown in Figure 3, which is confined 

by  
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,x = 0  ,x a L= = 2  ( ) ( ( ) ) ( ),x
upper ar r x b L L′= = − + +

1

2
1 5 41  ( ) ( ( ) ) ( )x

lower ar r x b L L′= = − − + +
1

2
1 5 41  and 

( ) ( ),upper lowerb r x r x= −  where ( ) / ( ) ,L La x= = −2 12 2
1 1 2 41  and .b L L= −1 5 4  

            

       
 
 

 

 

 

 

Figure 3 The oral cavity model in cylindrical coordinates system 
 

 Next, we use the analytical expression which is 

based on the Fourier-Bessel series form for the 

airflow in the oral cavity as shown in Figure 3. From 

equations (1)-(3), we see that these equations are 

three partial differential equations with three 

unknowns ,xu ru and p as functions of three 

independent variables ,x r and t . By assuming fully 

developed flow on area 1, so that ru = 0 and 

( , ).x xu u t r=  The continuity equation is satisfied and 

when developed flow conditions across the x − axis, 

equation (2) is omitted. We are interested in the 

cases of the airflow which is driven by the oscillating 

pressure gradient, then the following partial 

differential equations satisfied:

 

                        x x xu u up
t x r rr

 ∂ ∂ ∂∂ µ
= − + +  ∂ r ∂ r ∂∂ 

2

2
1 1 ,       sin( )p P t

x a
∂

= ω
∂

                            (4) 

           

where P
a

is the amplitude of the pressure gradient, a  

is the length on x − axis of the considered region  and 

ω is the cyclic frequency of the oscillating pressure 

gradient. The solution xu is defined to be periodic 

function as the follow:

  

                                            ( , ) ( )sin( ) ( )cos( ).x s cu r t u r t u r t= ω + ω                                         (5) 

 
      In order to the accurately solution, dimensionless variables ,x ,r xu and α are introduced as 

 

                            ,rr
b

=    ,xx
a
′

=    ,x
x

uu a
Pb

= µ2
   ,b ωr

α =
µ

                                 (6) 

 
where ( ) ( ) ( ),upper lowerb b x r x r x= = −  is the length of 
r − axis of the considered region and α  is the 

reduced frequency. After the introducing 

dimensionless variables, each region is transformed to 

be a one-unit region. 

 Equation (4) together with equation (5) are 

reduced to a system of non-homogeneous Helmholtz 

equations in one dimension (Rosu & Romero, 

1999): 

                                 ,c c
s

d u duu
r drdr

α = +
2

2
2
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

    .s s
c
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−α = − + +
2

2
2

11
 



 



                          (7)     

 The boundary conditions for su and cu are stated as follows: 
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                        ( ) ,su =0 0     ( ) ,cu =0 0    ( ) ,su =1 0    ( ) .cu =1 0                              (8) 

 

 The analytical solution of equation (7) which 

satisfies the boundary conditions (8) can be 

determined by using a Fourier-Bessel analysis of 

,su cu for r .  Hence, ,su cu and 1 are expressed 

(Gockenbach, 2011) as Fourier expansions:                                                           

                ( ),s m m
m

u A J r
∞

=

= α∑ 0
1

                 (9)                                                              

                 ( ),c m m
m
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∞

=
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          ( ),m m
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∞

=
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1

1                         (11) 

 

where J0  is the Bessel function of order zero which have 

an infinite number of positive roots mα . The term J0  

given by 
                                                     

         ( )( ) .
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 Substituting the above expansions (9)-(11) in the system of differential equations (7), we get the 

unknown coefficients mA and mB  as follows: 
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 We can calculate coefficient mC by the usual formula: 

                              
( )

;
[ ( )]
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 The resulting periodic velocity can be written as: 

                                 sin( ),x au u t= ω        ,a s cu u u= +                                           (14) 

 
where au is the amplitude resulting from the expression of .xu  We then can obtain the airflow velocity xu by 

substituting xu back into equation (6) , we get      

                                                         .x x
Pbu u

a
=

µ

2
                                                      (15) 

 
 Finally, we have obtained the analytical solution 

in cylindrical coordinates. We can transform back 

into the rectangular coordinates system as follows: 

,x xu u=  cos ,y ru u= ϕ  and sin ,z ru u= ϕ  the  

components of the flow velocity in x − axis, y −

  

     axis, and z − axis, respectively. We then use the 

obtained solution to simulate the airflow field in the 

three-dimensional oral cavity which is the one part of 

a human upper airway. 

 
Results Discussion 

  

 In this paper, the analysis is carried out with 

. / ,g m−r = × 3 31 148 10 . .Pa s−µ = × 51 82 10  and 

amplitude of the oscillating intrapulmonary pressure 
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. .P Pa= −133 32  from the research in medical 

literatures of Zhang and Kleinstreuer (2004), they 

found that the period of human breathing is about 4s. 

Therefore, we use .πω = 2  

 In order to show the realistic simulation, we 

present the 3D arrow plot for airflow field. In Figures 

4-5, we demonstrate the 3D arrow plots of airflow 

field in the breathing period at t = 1.4s and t = 2.5s, 

respectively. In addition, to see more clearly the 

airflow field, the arrow plot of airflow field is also 

plotted in the XZ-plane for the central cavity ( )′ =y 0 , 

left side ( )y′ = 1 and right side ( )y′ = −1 of the oral cavity 

at t = 1.4s and t = 2.5s as shown in Figures 6-7. 

For the present magnitude of the velocity, the contour 

plot of the airflow velocity for the central 

cavity ( )′ =y 0  of the oral cavity at = 1.4s and t = 

2.05s are shown in Figure 8.         

 When we consider the 3D arrow plot of the 

airflow velocity as shown in Figures 4-5, it is found 

that the air flows into the oral cavity at t = 1.4s 

which corresponds to the pulmonary relaxation. In 

contrast, the air flows out the oral cavity at t = 2.5s 

which corresponds to pulmonary contraction. At the 

same locations,      the velocity of airflow has size 

and direction different by each time.  The maximum 

velocity occurs in the central area of the oral cavity 

and reduces to the zero value close to the walls. 

   
 

 

 

 

 
 

 

 

 

 

Figure 4 The 3D arrow plot of airflow field in the oral cavity at t = 1.4 s 

 
 
 
 
 

 
 

 

 
 

 

Figure 5 The 3D arrow plot of airflow field in the oral cavity at t = 2.5 s 
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 In addition, the arrow plot of airflow field in the 

XZ-plane at the central cavity as shown in Figures 

6(a)-6(b), we see clearly the flow that the velocity 

profiles become flat in the central area and reduce to 

the zero for the area which is more close to the walls. 

When air flows into the oral cavity at t = 1.4s, the 

velocity shows the maximum value that about 549 cm/s 

in the central area and when air flows out the oral cavity 

at t = 2.5s, the maximum velocity value have about 480 

cm/s.  

 At the sides of cavity as shown in Figures 7(a)-

(d), the cross-sectional sides of oral cavity are less 

than central oral cavity. We found that when t = 1.4s 

air flows into the oral cavity and the velocity have 

maximum value that about 273 cm/s in the central 

of the plane. In contrast, when t = 2.5s air flows out 

the oral cavity and the velocity have maximum value 

that about 238 cm/s in the central of the plane. We 

can see that the central oral cavity have maximum 

value of the velocity more than at the side of oral 

cavity. 

 When we consider the contour plot of magnitude 

of the airflow velocity in the central cavity ( )′ =y 0 at   

t = 1.4s and t = 2.05s as shown in Figures 8(a)-

8(b), it is found that the velocity magnitude become 

flat in the central of the oral cavity. This shows a 

boundary layer behavior with a high velocity gradient 

close to the boundaries. The magnitude of velocity 

always shows the maximum value in the central area 

and reduces to the zero value for the area which is 

more close to the walls, which correspond to the 

arrow plot. When compare the velocities at different 

times are different and when t = 2.05s, the direction 

of the flow is changing to become the out flow, their 

magnitudes of the velocity are less than other times 

and close to zero. 

 From the previous results, we can conclude that 

(1) the airflow has changed both magnitude and 

direction according to the breathing period. By during 

the first two seconds, the air flows into the oral 

cavity and the direction of the flow is changing to 
become the out flow at the beginning of the third 

seconds. (2) At the same locations, the magnitude 

and direction of airflow velocity are changed and 

depend on time. The maximum velocity occurs in the 

central area of the oral cavity and reduces to the zero 

value to the wall. The obtained velocities are in the 

range of [0,900] cm/s which agree to other 

publications (Kongnuan & Pholuang, 2012; Zhang 

& Kleinstreuer, 2004). 
              

 

                 

 

         

 

            

 

 

 

 

            

           (a)                                                                      (b) 
 

Figure 6 The XZ-plane arrow plot of airflow field in central of the oral cavity ( )y 0′ =  at (a) t = 1.4 s and (b) t = 2.5 s 
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(a)                                                                         (b) 

 

 

 
                                       

 

 

 

 

 

(c)                                                                         (d) 
 Figure 7 The XZ-plane arrow plot of airflow field in the side of oral cavity at t = 1.4 s (left) and t = 2.5 s  

   (right) for: (a) and (b) right side of the oral cavity ( )y′ = −1 , (c) and (d) left side of  

   the oral cavity ( )y′ = 1 .    

 

 

 

 

 

 

 

    (a)       (b) 

 

 

Figure  8 The XZ-plane contour plot of magnitude of the airflow velocity in central of the oral cavity ( )y 0′ =  
   at (a) t = 1.4 s and (b) t = 2.05 s.     

          

Conclusions 

  

 An analytical expression for the axially symmetric 

solution of the airflow in human oral cavity model 

which is described by the Navier-Stokes and 

continuity equations in cylindrical coordinates are 

carried out as the objective of this research. The 

analytical solution of the oscillating airflow is given 

in a Bessel series form. The three-dimensional 

mathematical model is sophisticated to simulate the 
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airflow velocity. The obtained airflow profiles are 

reasonable and correspond to the previous works 

(Kongnuan & Pholuang, 2012; Zhang & 

Kleinstreuer, 2004). 
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