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Abstract
A discrete model for the growth of an avascular tumor on a three-dimensional square lattice has been developed. A cellular
automata method for tumor growth based on microscopic description of the immune system response, the cell proliferation,
the cell death and its degradation is used to simulate the growth. The Monte-Carlo method is be applied to this model. The
results give a growth curve which is shown to qualitatively agree well with experimental result.
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1.INTRODUCTION

Most tumor growth models (Qi et al., 1993; Kansal
etal., 2000; Kansal et al., 2000; Boondirek et al., 2006;
Kirschner & Panetta, 1998; Ferreira et al., 1998; Ferreira
et al., 1999; Voitikova, 1998; Smolle et al., 1990;
Matzavinos & Chaplain, 2004; Duchting &
Vogelsaenger, 1981; Bellomo & Preziosi, 2000; Galach,
2003; Alarcon et al., 2003; Buric & Todorovic, 2002)
contain several basic features, such as, the cell cycle,
the cell proliferation, the lack of nutrients, the
competition for resources, and the cytotoxic activity
by immune response, etc. All of these features have to
be investigated in order to understand the kinetics of
tumor growth.

The immune response is one of the most important
aspects in the growth of the cancer cells. Many
studies have established that the immune response
plays the crucial role in eliminating the cancer cells
from the healthy tissues (Boondirek et al., 2006;
Kirschner & Panetta, 1998; Matzavinos & Chaplain,
2004; Bellomo & Preziosi, 2000; Galach, 2003; Steel,
1977). There have been much interests in using
mathematical models to simulate the immune system
response (Qi et al., 1993; Boondirek et al., 2006;
Kirschner & Panetta, 1998; Voitikova, 1998; Smolle et
al., 1990; Matzavinos & Chaplain, 2004; Bellomo &
Preziosi, 2000; Galach, 2003; Buric & Todorovic, 2002;
Steel, 1977).

Theresearchers (Qiet al., 1993; Kansal et al.,2000;
Kansal et al., 2000; Boondirek et al., 2006; Voitikova,
1998; Smolle et al., 1990; Alarcon et al., 2003;
Matzavinos & Chaplain, 2004) have worked on the
discrete models that are automaton-based. The
cellular automata models, called cellular automaton (CA)
models are based on the properties of the actual cells
at the microscopic or cellular level. It allows for a more

realistic stochastic approach to cancer cell growth. The

CA models (Qietal., 1993; Kansal et al., 2000; Kansal et
al., 2000; Boondirek et al., 2006; Voitikova, 1998; Smolle
etal., 1990; Duchting & Vogelsaenger, 1981; Alarcon et
al., 2003) use cellular level information about the
cancer cells to determine the cellular automata's rules.

In 1993, Qi et al. developed a cellular automaton
model for cancer growth which does give rise to a
Gompertz growth law, an important feature seen in the
actual growth of cancer cells. Their model is based on
a microscopic description of tumor growth in the
presence of immune surveillance. In 2006, Boondirek
et al., 2006 developed a microscopic model of tumor
growth from Qi et al., 1993 and Kuznetsov & Taylor,
1994 as shown in Figure 1. Their molecular dynamics
model (Boondirek et al., 2006) takes into account the
tumor cell proliferation, its interaction with the immune
system, resulting in either lysis of the proliferating
tumor cells or the detachment of immune binding
without damaging the tumor cells or the removal of the
dead tumor cells.

The major purpose of this research is to extend the
CA model of Boondirek et al., 2006 to three-dimensional
square lattice to make the model more realistic in
spatial distribution with the different starting
configuration and rule of the invasion then investigate
the simulation results, as well.

Our model and the methodology used are presented
in Section 2. In Section 3, we present the simulating
results for the tumor progression. In Section 4,
conclusions are given.

2. MATERIALAND METHODS

Lattice system and microscopic dynamics

We have used the cellular automata (CA)
approach to study the dynamics of the tumor growth
coupled with immune response. A Computer model was
developed from the two dimensional square lattice
previously published by Boondirek and co-workers
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[Boondirek etal., 2006] the three dimensional lattice or
cubic lattice due to CA algorithm. In the model, the
host tissue is represented by a lattice of size LxLxL.
Each site is identified by the coordinates ( x,,v,,z,:n
=1, 2, 3, ..., L) which are designated by the values
either 0, 1, 2, or 3 to specific the cell type normal, tumor,
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complexes, and dead cell, respectively. We denote the
proliferating tumor cells, the dead tumor cells, the
cytotoxic lymphocyte and the TICLs-tumor cell
complexes by P, D, TICLs, and C, respectively. The
kinetics of the tumor development is represented in
Figure 1.
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Figure 1. Kinetic mechanisms of development of cancer with immune response (Boondirek et al., 2006).

The parameters r, wrotif . > Vbinding 5 Vieracn.» Tiysis and decay AIC
the non-negative kinetic constants. r,,,, istherateof

tumor proliferation. 7,,,,,, is the rate of binding of
TICLs to tumor cells. r,,,,., istherate of detachment of

TICLs from cancer cell without damaging cells. 7, is
the rate of detachment of TICLs from dead tumor cells,
due to the irreversible programming of the tumor cells
for lysis. r,., describes dissolution of the dead

cancer cells. We define the function #’ In vivo

prolif . s
avascular tumor growth rate, as r/,,,, (t)=r,.., (I1-%),
where is the carrying capacity and is the number of
proliferating tumor cells, which arises from the
limitation on the amount of nutrient that is available for
proliferation of cancer cells or from the increasing
accumulation of waste product accumulation which
causes a decrease in the rate of proliferation of cancer
cells (Qietal., 1993; Boondirek et al., 2006; Bru et al.,
2003; Preziosi, 2003). Evidently, /., decreases when
there is an increase in the number of cancer cells. The
type of input arises because the proliferating tumor
cells are in competition with each other for the limited
amount of nutrients available. This will affect the first
output of the fist reaction shown in Figure 1. This
effect was studied in avascular microscopic tumor
growth in vivo (Bru et al., 2003; Preziosi, 2003). In the
second reaction, the parameter r,,,,, givesthe tumor

potential for escaping the host's immune surveillance.

Tvmamg 1S @ measure of the TICLs response to the

tumor cells . describes the rate of detachment of
activated TICLs from tumor cell as an irreversible
programming of the tumor cells for lysis. r,,.,, describes
the dissolution process in which the 'dead' tumor cells
return to the normal tissue.

Cellular automata algorithm

At t =0, an initial configuration consist of seven
cancer cells locating at the center of the normal tissue
as shown in Figure 2. Then each time step the CA
update rules are applied. The CA rules are applied to
each tumorous cell one by one. We select sequentially
at random with the same probability and carry out one
of the action upon its state as shown in schematic
diagram, Figure 4, with the details and flowchart in
Boondirek et al, 2006. However, since the tissue model
of Boondirek, et al, 2006 is the two dimensional square
lattice, with von Neumann neighborhood of four
nearest neighboring sites. Here we extend to more
complicated and realistic model, namely a three
dimensional cubic lattice with von Neumann
neighborhood of six nearest neighboring sites as show
in Figure 3. Then by observation with the same set of
parameters and carrying capacity the growth pattern
in the 3D model is more compact than in the 2D model
due to the number of nearest neighboring sites.

Figure 2. An initial configuration of seven cancer cells located at the centre of normal tissue sites.

Figure 3. Six nearest-neighboring sites (gray) of the cancer site (green) and the Nearest-neighbor rule. (the so-called von

Neumann neighborhoods in 3D)
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Figure 4. Cell dynamics for tumor growth Schematic diagram of cellular automaton model of tumor growth reveals the
possible action, reaction and changing state of each type of tumor cell. P(t) denotes the number of proliferating cells at time
t, C(t) denotes the number of TICLs-tumor cell complexes and D(t) denotes the number of dead tumor cells(Boondirek et al.,

2006).
3.RESULTS

We have performed simulation according to the
dynamics given above. CA simulation is started by
placing seven tumor cells in the center of a square
lattice, subsequently the invasion of the tumor cells
into the rest of the lattice sites which represents the
normal tissue occurs. The results of the simulation
obtained at time t gives a snapshot of the simulated
tumor pattern at time t are shown in Figure 6. As
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evidently seen three dimensional spatial visualizations
of the tumor invasion into the normal tissue generated
become greater and greater as time progresses.
Quantitatively, we have measured the total number of
tumor cells present at time 't' denoted by N(t) which is
equal to the sum of P(t), the number of proliferating
tumor cells at time t; C(t), the number of TICL (tumor
cell complexes) at time t and D(t), the number of dead
tumor cellsattimet, i.e., N(t) = P(t) + C(t) + D(t). N(t) is
ameasure of the size of the tumor at time t.
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Figure 5. Typical simulated tumor growth curve. The simulation settingisr

r... = 0.35and K =100000.
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Figure 6. Shows snapshot of tumor(more than million cells) at t =150 on a 151x151x151 cubic lattice and its growth curve
with the number of proliferated cells. The parameters setting are rprolif = 0.8, rbinding = 0.15, rdetach = 0.35, rlysis = 0.35,

rdecay = 0.35 and K =1000000. The color code is m:cancer cell, m: complexes cell,

respectively.

Figure 7. represents the comparison between the
typical simulated tumor growth curve (circle) and
fitted Gompertz growth function. To obtain the fit, we
had to normalize the data. This fitting used the Gompertz

:dead tumor cell, and m:normal cell,

parameters and which is the growth curve agree well
with in vivo experimental results of rat tumor W12a7 as
reported by Waliszewski and Konarski, 2002 . The
parameter setting is the same simulation as in Figure 6.
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O Simulation Results
— Experimental data for Rat W12a7 tumor
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Figure 7. Comparision between the simulated tumor growth (circle) and the experimental growth curves in vivo
for rat tumor W12a7 (Waliszewski and Konarski, 2002) with coefficient of nonlinear regression .

4. CONCLUSION

The CA model in three dimensional square lattices
of an avascular tumor in the presence of immune
response has been studied. The dynamics of the
tumor growth based on microscopic description of the
immune system response, the cell proliferation, the cell
death and its degradation. The Monte-Carlo
simulations are then performed to simulate the growth
of real tumor. The underlined results showed that the
fitted Gompertzian curve could be a good function to
describe cancerous growth. In addition, the
associated parameters such as varied rbinding , rdetach
seem to playa crucial role on how the immune system
influences the growth of the tumor. Other comparison
measurement between the 3D CA model with the 2D
CA model such as space distribution are being in
progress.
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