Equilibrium, Kinetics, and Thermodynamic Studies Concerning the Removal of 2–chlorophenol Using Chemically Carbonized Rice Husk Waste


Duangdao Channei Auppatham Nakaruk Wilawan Khanitchaidecha Panatda Jannoey Sukon Phanichphant


         In this work, the adsorption of a harmful pollutant, 2–chlorophenol, from aqueous solution onto carbonized rice husk (C–RH) was investigated. Highly-porous adsorbent C–RH was produced in this study using chemical activation with hydrochloric acid, followed by carbonization at 550°C. The surface morphology of C–RH by scanning electron microscope (SEM) and BET N2 adsorption/desorption techniques showed that the results of C–RH characterization had a pore volume of 0.042 cm3/g and BET surface area of 278.90 m2/g due to the resulting silicon element contained in rice husk ash. Pore size distribution having a clear hysteresis loop belongs to type IV isotherm nature with H3–type of hysteresis loop, which is distributed by pores mainly in the mesoporous range. The batch adsorption experiments showed that the equilibrium uptake was increased with an increase in initial 2–chlorophenol concentration. The experimental isotherm data fit better with the Freundlich isotherm model, which followed an ideal multilayer adsorption with the maximum monolayer adsorption capacity (Nm) of 13.4048 mg/g obtained by Langmuir. Kinetic data was best fit to a pseudo–second order rate equation, indicating chemisorption. Thermodynamic parameter in terms of ΔGo for the adsorption showed that adsorption on the surface of C–RH at 304.15 K was spontaneous in nature. Consequently, C-RH produced from rice husk waste has the potential to serve as an alternative to commercial activated carbon for water treatment. 

Keywords: Mesopore, Rice husk, Freundlich model, Adsorption, 2–chlorophenol


Abdelwahab, O., & Amin, N. K. (2013). Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: kinetics, isotherm and thermodynamic studies. The Egyptian Journal of Aquatic Research, 39(4), 215-223. https://doi.org/10.1016/j.ejar.2013.12.011
Adane, B., Siraj, K., Siraj, K., & Meka, N. (2015). Kinetic, equilibrium and thermodynamic study of 2-chlorophenol adsorption onto Ricinus communis pericarp activated carbon from aqueous solutions. Green Chemistry Letters and Reviews, 8(3-4), 1-12. https://www.tandfonline.com/doi/full/10.1080/
Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10(2), S3381-S3393. https://doi.org/10.1016/j.arabjc.2014.01.020
Bedin, K. C., Martins, A. C., Cazetta, A. L., Pezoti, O., & Almeida, V. C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chemical Engineering Journal, 286, 476-484. https://doi.org/10.1016/
Ekpete, O. A., Horsfall, M., Tarawou, T., & Nepal, J. (2011). Adsorption of chlorophenol from aqueous solution on fluted and commercial activated carbon. Journal of Nepal Chemical Society, 27, 1-11. https://doi.org/10.3126/jncs.v27i1.6435
Fasakin, O., Dangbegnon, J. K., Momodu, D. Y., Madito, M. J., Oyedotun, K. O., Eleruja, M. A., & Manyala, N. (2018). Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance. Electrochimica Acta, 262, 187-196. https://doi.org/10.1016/j.electacta.2018.01.028
Foo, K. Y., Lee, L. K., & Hameed, B. H. (2013). Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate. Bioresource Technology, 134, 166-172. https://doi.org/10.1016/j.biortech.2013.01.139
Freundlich, H., & Heller, W. (1939). The Adsorption of cis- and trans-Azobenzene. Journal of the American Chemical Societ, 61(8), 2228-2230. https://doi.org/10.1021/ja01877a071
Grabowska, E.L., Gryglewicz, G., & Machnikowski, J. (2010). p-Chlorophenol adsorption on activated carbons with basic surface properties. Applied Surface Science, 256(14), 448-4487. https://doi.org/
Grabowska, E. L. (2016). Effect of micropore size distribution on phenol adsorption on steam activated carbons. Adsorption, 22(4-6), 599-607. https://link.springer.com/article/10.1007/s10450-015-9737-x
He, J., Hong, S., Zhang, L., Gan, F., & Ho, Y. (2010). Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environmental Bulletin, 19, 2651-2656. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20113017638
Hernández, M. A., Velasco, J. A., Asomoza, M., Solís, S., Rojas, F., & Lara, V. H. (2004). Adsorption of Benzene, Toluene, and p-Xylene on Microporous SiO2. Industrial & Engineering Chemistry Research, 43(7), 1779-1787. https://doi.org/10.1021/ie0204888
Ho, Y. S., McKay, G., Wase, D. A. J., & Foster, C. F. (2000). Study of the Sorption of Divalent Metal Ions on to Peat. Adsorption Science and Technology, 18, 639-650. https://doi.org/10.1260/0263617
Igbinosa, E. O., Odjadjare, E. E., & Chigor, V. N. (2013). Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. Scientific World Journal, 2013, 1-11. http://dx.doi.org/10.1155/2013/460215
Kharat, Z. B., Mohammadi Galangash, M., Ghavidast, A., & Shirzad-Siboni, M. (2018). Removal of reactive black 5 dye from aqueous solutions by Fe3O4@SiO2-APTES nanoparticles. Caspian Journal of Environmental Sciences, 16 (8), 287-301. https://doi.org/10.22124/CJES.2018.3068
Klapiszewski, L., Bartczak, P., Szatkowski, T., & Jesionowski, T. (2017). Removal of lead(II) ions by an adsorption process with the use of an advanced SiO2/lignin biosorbent. Polish Journal of Chemical Technology, 19 (1), 48-53. https://doi.org/10.1515/pjct-2017-0007
Kuleyin, A. (2007). Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. Journal of Hazardous Materials, 144(1-2), 307-315. https://doi.org/10.1016/j.jhazmat.2006.10.036
Kumar, P. S., Ramalingam, S., Kirupha, S. D., Murugesan, A., Vidhyadevi, T., & Sivanesan, S. (2011). Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal, 167(1), 122-131. https://doi.org/10.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
Lin, Y. (2017). Adsorption and biodegradation of 2-chlorophenol by mixed culture using activated carbon as a supporting medium-reactor performance and model verification. Applied Water Science, 7(7), 3741-3757. https://doi.org/10.1007/s13201-016-0522-0
Mahmiani, Y., Sevim, A. M., & Gül, A. (2016). Photocatalytic degradation of 4-chlorophenol under visible light by using TiO2 catalysts impregnated with Co (II) and Zn (II) phthalocyanine derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 321, 24-32. https://doi.org/10.1016/j.
Nsami, J. N., & Mbadcam, J. K. (2013). The adsorption efficiency of chemically prepared activated carbon from Cola Nut Shells by on methylene blue. Journal of Chemistry, 2013, 1-7. http://dx.doi.org/10.
Njoku, V. O., Islam, M. A., Asif, M., & Hameed, B. H. (2014). Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide. Journal of Analytical and Applied Pyrolysis, 110, 172-180. https://doi.org/10.1016/j.jaap.2014.08.020
Ngulube, T., Gumbo, J. R., Masindi, V., & Maity, A. (2017). An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. Journal of Environmental Management, 191, 35-57. https://doi.org/10.1016/j.jenvman.2016.12.031
Nethaji, S., Sivasamy, A., & Mandal, A.B. (2013). Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI). Bioresource Technology, 134, 94-100. https://doi.org/10.1016/j.biortech.2013.02.012
Othman, Z. A. (2012). A review: fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874-2902. https://doi.org/10.3390/ma5122874
Pirbazari, A. E. (2015). Sensitization of TiO2 nanoparticles with cobalt phthalocyanine: an active photocatalyst for degradation of 4-chlorophenol under visible light. Procedia Materials Science, 11, 622-627. https://doi.org/10.1016/j.mspro.2015.11.096
Qi, L., Tang, X., Wang, Z., & Peng, X. (2017). Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. International Journal of Mining Science and Technology, 27(2), 371-377. https://doi.org/10.1016/j.ijmst.2017.01.005
Shah, B., Tailor, R., & Shah, A. (2011). Sorptive sequestration of 2-chlorophenol by zeolitic materials derived from bagasse fly ash. Journal of Chemical Technology & Biotechnology, 86, 1265–1275. https://doi.org/10.1002/jctb.2646
Shamsuddin, M. S., Yusoff, N. R. N., & Sulaiman, M. A. (2016). Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry, 19, 558-565. https://doi.org/10.1016/j.proche.2016.03.053
Tahari, M. N. A., & Yarmo, M. A. (2014). Adsorption of on silica dioxide catalyst impregnated with various alkylamine. AIP Conference Proceedings, 1614(334), 1-9. https://doi.org/10.1063/1.4895218
Tütem, E., Apak, R., & Ünal, Ç. F. (1998). Adsorptive removal of Chlorophenols from water by bituminous shale. Water Resources, 32(8), 2315-2324. https://doi.org/10.1016/S0043-1354(97)00476-4
Yakout, S. M., & Sharaf El–Deen, G. (2016). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry, 9(2), S1155-S1162. https://doi.org/
Zazouli, M., Balarak, D., & Mahdavi, Y. (2013). Application of azolla for 2-chlorophenol and 4-chrorophenol removal from aqueous solutions. Iranian Journal of Health Sciences, 1(2), 43-55. https://doi.org/10.

Research Articles


How to Cite
CHANNEI, Duangdao et al. Equilibrium, Kinetics, and Thermodynamic Studies Concerning the Removal of 2–chlorophenol Using Chemically Carbonized Rice Husk Waste. Naresuan University Journal: Science and Technology (NUJST), [S.l.], v. 28, n. 1, p. 94-104, feb. 2020. ISSN 2539-553X. Available at: <http://www.journal.nu.ac.th/NUJST/article/view/Vol-8-No-1-2020-94-104>. Date accessed: 28 feb. 2020. doi: https://doi.org/10.14456/nujst.2020.9.