The Glyphosate (Roundup): Fate in Aquatic Environment, Adverse Effect and Toxicity Assessment in Aquatic organisms Glyphosate (Roundup)

##plugins.themes.bootstrap3.article.main##

Chutima Thanomsit Samnao Saowakoon Amnuay Wattanakornsiri Jakkaphun Nanuam Witchuda Prasatkaew Phochit Nanthanawat Patcharee Mongkolvai Wanpen Chalorcharoenying

Abstract

         Glyphosate (C3H8NO5P) is an organic substance in phosphonomethyl glycine group consisting of phosphorus in its structure. Its well-known trading name is Roundup, which is globally applied as herbicide. In Thailand, it has been widely applied, which results in it occupy in the top order of imported ago-chemical even though it was banned in many countries. Glyphosate application can cause contamination in groundwater and nearby surface water. Recently, there have been studies indicating that glyphosate contamination causes adverse effects on aquatic organism and is bio-accumulated and bio-magnified through food chain and finally reaches to human beings as top consumer. Glyphosate causes alterations in behavior, physiology, DNA, chromosome and bio-chemistry and moreover mortality in the case of exposure in high level. In this case, it may effect on aquatic population which is an important fishery stock in the future. In Thailand, there are lacks of fundamental data and knowledge thus it requires more studies or tests to fulfill this gap. As the importance mentioned above, the effect of glyphosate should be studied for developing the protection and management plan to reduce glyphosate contamination in aquatic organisms and environments. 


Keywords: acetycholinesterase, aquatic organism, glyphosate, herbicide, roundup

References

Ali, A. J., Jamal Mohamed, A., Arun Kumar, M. S., & Akbar John, B. (2018). Organophosphorus Pesticides Toxicity on Brine shrimp, Artemia. Journal Clean Was, 2(1), 23-26.
Annett, R., Habibi, H. R., & Hontela, A. (2014). Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. Journal of Applied Toxicology, 34(5), 458-79.
Borggaard, O. K., & Gimsing, A. L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science, 64, 441-456.
Braz-Mota, S., Sadaus-Henrique, H., Duarte, R. M., Val, A. L., & Almeida-Val, V. M. F. (2015). Roundup exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macroponum. Chemosphere, 135, 53-60.
Buffin, D., & Jewell, T., (2001). Health and environmental impacts of glyphosate: The implications of increased use of glyphosate in association with genetically modified crops. UK: The Pesticide Action Network.
Camargo, M. M. P., & Martinez, C. B. R. (2006). Biochemical and physiological biomarkers in Prochilodus lineatus submitted to in situ tests in an urban stream in southern Brazil. Environmental Toxicology and Pharmacology, 21, 61–69.
Corbera, M., Hidalgo, M., Salvado, V., & Wieczorek, P. P. (2005). Determination of glyphofase and aminomethylphosphonic acid in natural water using the capillary electrophoresis combined with enrichment step. Analytica Chemica Acta, 540, 3–7.
Cox, C., (1995). Glyphosate. Journal of Pesticide Reform Archives, 15(3), 14-20.
Cuhra, M., Traavik, T., & Bøhn, T. (2013). Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology, 22, 251–262.
Defargea, N., Spiroux de Vendômoisb, J., & Séralini, G. E. (2018). Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports, 5, 156-163.
Dill, G. M., Sammons, R. D., Feng, P. C. C., Kohn, F., Kretzmer, K., Mehrsheikh, A., … Haupfear, E. A. (2010). Glyphosate: Discovery, Development, Applications, and Properties. In V. K. Nandula (Ed). Glyphosate Resistance in Crops and Weeds: History, Development, and Management. (pp. 1-34). https:// doi.org/10.1002/9780470634394.ch1
Filizadeh, Y., & Islami, H. R. (2011). Toxicity determination of three sturgeon species exposed toglyphosate. Iranian Journal of Fisheries Science, 10(3), 383-392.
Friends of the Earth Europe. (2013). The environmental impacts of glyphosate. Belgium: Brussels.
Giesy, J. P., Dobson, S., & Solomon, K. R. (2000). Ecotoxicological risk assessment for roundup herbicide. Reviews of Environmental Contamination and Toxicology, 167, 35-120.
Glozier, N. E., Struger, J., Cessna, A. J., Gledhill, M., Rondeau, M., Ernst, W. R., Donald, D. B. (2012). Occurrence of glyphosate and acidic herbicides in select urban rivers and streams in Canada, 2007. Environmental Science and Pollution Research International, 19, 821–834.
Gruber, S. J., & Munn, M. D. (1998). Organophosphate and carbamate insecticides in agricultural waters and cholinesterase (ChE) inhibition in Common Carp (Cyprinus carpio). Archives of Environmental Contamination and Toxicology, 35, 391-396.
Glusczak, L., Santos, M., Crestani, M., & Pimental Veieira, V. (2006). Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in Piava (Leporinus obtusidens). Ecotoxicology and Environmental Safety, 65(2), 237-241.
Howe, C. M., Berrill, M., Pauli, D. B., Helbing, C. C., Werr, K., & Veldhoen, N. (2004). Toxicity of glyphosate-based pesticides to four North American frog species. Environmental Toxicology and Chemistry, 23, 1928–1938.
Langiano, V. C., & Martinez, C. B. R. (2008). Toxicity and effects of a glyphosate-based herbicide on the neotropical fish Prochilodus lineatus. Comparative Biochemistry and Physiology, 147(C), 222–231.
Lipok, J., Studnik, H., & Gruyaert, S. (2010). The toxicity of Roundups 360 SL formulation and its main constituents: Glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicology and Environmental Safety, 73, 1681-1688.
Jitrapat, H., Watawanichakul, N., & Muangphra, P. (2015). Toxicity of commercial glyphosate on mobilization, growth, reproduction and catalase activity of water flea Moina macrocopa. KMUTT Research and Development Journal, 38(2), 133-143.
Jiraungkoorskul, W., Upathama, S., Kruatrachuea, M., Sahaphongc , S., Vichasri-Gramsa, S., & Pokethitiyooka, P. (2002). Histopathological Effects of Roundup, a Glyphosate Herbicide, on Nile tilapia (Oreochromis niloticus). Journal of The Science Society of Thailand, 28, 121-127.
Jiraungkoorskul, W., Upatham, E. S., Kruatrachue, M., Sahaphong, S., Vichasri-Grams, S., & Pokethitiyook, P. (2003). Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). Aquatic Toxicology, 18, 260-267.
Martinez, C. B. R., & Souza, M. M. (2002). Acute effects of nitrite onion regulation in two neotropical fish species. Comparative Biochemistry and Physiology, 133 (A), 151–160.
Melo, K. G., De Nucci, G., Trape, A. Z., Jacobucci, S. R. E., & Rosa, P. C. (2018). Brief review analytical methods for the determination of glyphosate. MOJ Toxicology, 4(2), 39-42.
Menėndez- Heelman, R., Ferrey, G. V., Santos Afonso, M., & Salibian, A. (2012). Glyphosate A an acetylcholinesterase inhibitor in Cnesterodon decemmaculatus. Bulletin of Environmental
Contamination and Toxicology, 88, 6-9.
Mercurio, P., Flores, F., Muellera, J. F. Carter, F., & Negri, A. P. (2014). Glyphosate persistence in seawater. Marine Pollution Bulletin, 85, 385-390.
Modesto, K. A., & Martinez, C. B. R. (2010). Effects of Roundup Transorb on fish: Hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere, 81, 781–787.
Moore, L. J., Fuentes, L., Rodgers, J. H. Jr, Bowerman, W. W., Yarrow, G. K., Chao, W. Y., & Bridges, W. C. Jr. (2012). Relative toxicity of the components of the original formulation of Roundup® to five north American anurans. Ecotoxicology and Environmental Safety, 78, 128–133.
Pimentel, D. (1995). Amounts of pesticides reaching target pests: environmental impacts and ethics. Journal of Agricultural and Environmental Ethics, 8, 17-29.
Perez, H., Sullivan, E. C., Michael, K., & Harris, R. (2012). Fish consumption and advisory awareness among the Philadelphia Asian community: a pilot study. Journal of Environmental Health Research, 74, 24–28.
Rodrigues, L. B., Oliveira, R. D., Abe, F. R., Brito, R. B., Moura, D. S., Ladares, M. C., … Oliveira, G. A. R. (2016). Ecotoxicological assessment of glyphosate-based herbicides: Effect on different organisms. Environmental Toxicology and Chemistry, 9999 (9999), 1-9.
Sawasdee, B., Phuthonghin, P., & Kunapratom, S. (2016). Acute Toxicity of Paraquat and Glyphosate on embryonic development of Climbing Perch (Anabas testudineus). Prawarun Agriculture Journal, 13(1), 70-79.
Shipitalo, M. J., Malone, R. W., & Owens, L. B. (2008). Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff. Journal of Environmental Quality, 37(2), 401–408.
Sadeghi, A., & Hedayati, A. (2014). Investigation of LC50, NOEC and LOEC of Glyphosate, Deltamethrin and Pretilachlor in Guppies (Poecilia Reticulata). Iranian Journal of Fisheries Sciences, 8(26), 1124-1129.
Szarek, J., Siwicki, A., Andrzejewska, A., Terech-Majewska, E., & Banaszkiewicz, T. (2000). Effects of the herbicide RoundupTM on the ultrastructural pattern of hepatocytes in carp (Cyprinus carpio). Marine Environmental Research, 50, 263-266.
Tawatsin, A., Thavara, U., & Siriyasatien, P. (2015). Pesticides used in Thailand and toxic effects to human health. Archives of Medical Research, 3, 1-10.
Thanomsit, C., Wattanakornsiiri, A., & Nanthanawat, P. (2016). Effect of glyphosate on fish behavior and histological alteration of gills in Asian Sea bass (Lates calcarifer). Burapha Science Journal, 21(2), 204-215.
Thanomsit, C., Maprajuab, A., Prasartkaew, W., Ocharoen, Y., Wattakornsiri, A., Nanuam, J., & Nanthanawat, P. (2017). Application of Acetylcholinesterase as biomarker for pesticide exposure to reduce health risk in consuming Pond snail and Golden apple snail. Proceeding of 8th Innovation and Technology conferences (pp. A221-A227). Surin: Rajamangala University of Technology Isan Surin Campus.
Thanomsit, C., Maprajuab, A., Saowakoon, A., Prasartkaew, W., Ocharoen, Y., Wattanakornsiri, A., … & Nanthanawat, P. (2018). Acetylcholinesterase (AChE): Potential Biomarker for evaluating Pesticide exposure on egg and tissue of golden apple snail (Pomecea canliculata) from Huai-Saneng Resevior, Surin Province, Thailand. The Agricultural Science Society of Thailand, 51(3), 104-117.
Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, C. K., Finckh, M. R., & Morris, J. G. Jr. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616-617, 255-268.
Walker, C. H., Hopkin, S. P., & Peakall, D. B. (2006). Principle of Ecotoxicology. Taylor & Francis: USA.
World Health Organization (WHO). (1994). Glyphosate. Switzerland, Geneva: Environmental Health Criteria.
Yang, X., Ge, H., Song, Y., Li, J., & Chen, G. (2015). Microbial transformation of 20(S)-protopanaxatriol by Mucor spinosus. Biotechnology Letters, 37, 397-402.
You, H., Goben, G. N., Du, X., Pali, G., Cai, P., Jones, M., & McManus, D. P. (2016). Functional characterization of Schistosoma japonicum acetylcholinesterase. Parasites & Vector, 9(328), 1-12.
Zouaoui, K., Dulaurent, S., Gaulier, J. M., Moesch, C., & Lachatre, G. (2013). Determination of glyphosate and AMPA in blood and urine from humans: about 13 cases of acute intoxication. Forensic Science International, 226, e20-e25.

Section
Research Articles

##plugins.themes.bootstrap3.article.details##

How to Cite
THANOMSIT, Chutima et al. The Glyphosate (Roundup): Fate in Aquatic Environment, Adverse Effect and Toxicity Assessment in Aquatic organisms. Naresuan University Journal: Science and Technology (NUJST), [S.l.], v. 28, n. 1, p. 65-81, feb. 2020. ISSN 2539-553X. Available at: <http://www.journal.nu.ac.th/NUJST/article/view/Vol-8-No-1-2020-65-81>. Date accessed: 03 july 2020. doi: https://doi.org/10.14456/nujst.2020.7.

Most read articles by the same author(s)