Exchange-field-controllable 0-π transition in asymmetric Josephson spin-valve heterostructure

##plugins.themes.bootstrap3.article.main##

Wachiraporn Choopan

Abstract

        The Josephson Effect in an asymmetric SIFM1IFM2IS Josephson Junction (JJ) in which the two SIF bilayers have different ferromagnetic layers (FM1 and FM2) is studied.  The linearized Usadel equations, which are valid for low transparency interfaces between S and FM layers, are used to obtain the expressions for the critical current in this junction.  The relative magnitudes and directions of the exchange fields in (FM1 and FM2) are treated as adjustable parameters.  The Josephson currents in this junction are simulated by numerically evaluating the expressions for various values of the adjustable parameters.  We consider the cases of the exchange fields in the two ferromagnetic layers being parallel and being antiparallel.    We show that increasing the exchange field in the first layer of a parallel aligned junction while maintaining the value of the exchange field in the second layer will induce a “0-π” transition, i.e., a reversal of the direction of the current, but that increasing the exchange field in an antiparallel alignment will not.  When the exchange field in the second layer in a parallel aligned SIFM1IFM2IS junction is large, it is seen that a small change of the exchange field in the first layer can induce the switch of “0-state” JJ to a “π-state” JJ in the entire temperature range of operation (0 < T < Tc) of the junction. PACS classification codes: 74.80.Dm; 74.50.+r; 75.30.Et; 74.60.Jg


Keywords: Josephson junction, Ferromagnet, Critical current, Spintronic, Electronic switching

References

Bergeret, F.S., Volkov, A.F., & Efetov, K.B. (2001). Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization. Physical Review, B64, 134506.
Bergeret, F. S., Volkov, A. F., & Efetov, K. B. (2001). Enhancement of the Josephson Current by an Exchange Field in Superconductor-Ferromagnet Structures. Physical Review Letters, 86, 3140.
Bergeret, F. S., Volkov, A. F., & Efetov, K. B. (2005). Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Reviews of Modern Physics, 77, 1321.
Born, F., Siegel, M., Hollmann, E. K, Braak, H., Golubov, A. A., Gusakova, D. Y., & Kupriyanov, M. Y. (2006). Multiple 0−π transitions in superconductor/insulator/ferromagnet/superconductor Josephson tunnel junction. Physical Review B, 74, 140501(R).
Bulaevskii, L. N., Kuzil, V. V., & Sobyanin, A. A. (1977). Superconducting system with weak coupling to the current in the ground state. Journal of Experimental and Theoretical Physics Letters, 25, 290-294.
Buzdin, A. I., Bulaevskii, L. N., & Panjukov, S. V. (1982). Critical-current oscillations as a function of the exchange field and thickness of the ferromagnetic metal (F) in an SFS Josephson junction. Journal of Experimental and Theoretical Physics Letters, 35, 178-180.
Buzdin, A. I. (2003). π-junction realization due to tunneling through a thin ferromagnetic layer. Journal of Experimental and Theoretical Physics, 75, 583-586.
Buzdin, A. I. (2005). Proximity effects in superconductor-ferromagnet heterostructures. Reviews of Modern Physics, 77, 935-976.
Dayton, I. M., Sage, T., Gingrich, E. C., Loving, M. G., Ambrose, T. F., Siwak, N. P., … Naaman, O. (2018). Experimental demonstration of a Josephson magnetic memory cell with a programmable π-junction. IEEE Magnetics Letters, 9, 3301905.
Frolov, S. M., Van Harlingen, D. J., Boginov, V. V., Oboznov, V. A., & Ryazanov, V. V. (2006). Josephson interferometry and Shapiro step measurements of superconductor-ferromagnet-superconductor 0 – π junctions. Physical Review B, 74, 020503(R).
Gingrich, E. C., Niedzielski, B. M., Glick, J. A., Wang, Y., Miller, D. L., Loloee, R., … Birge, N. O. (2016). Controllable 0–π Josephson junctions containing a ferromagnetic spin valve. Nature Physics, 12, 564–567
Golubov, A. A., Kupriyanov , M. Y., & Fominov, Y. V. (2002). Nonsinusoidal current-phase relation in SFS Josephson junctions. Journal of Experimental and Theoretical Physics Letters, 75, 588-592.
Karabassov, T., Guravova, A. V., Kuzin, A. Y., Kazakova, E. A., Kawabata, S., Lvov, B. G., & Vasenko, A. S. (2020). Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers. Beilstein Journal of Nanotechnology, 11(1), 252-262.
Koshina, E. A., & Krivoruchko, V. N. (2001). Spin polarization and π-phase state of the Josephson contact: Critical current of mesoscopic SFIFS and SFIS junctions. Physical Review B, 63, 224515.
Li, X., Zheng, Z., Xing, D. Y., Sun, G., & Dong, Z. (2002). Josephson current in ferromagnet-superconductor tunnel junctions. Physical Review B, 65, 134507.
Li, C., de Ronde, B., de Boer, J., Ridderbos, J., Zwanenburg, F., Huang, Y., … Brinkman, A.(2019). Zeeman-Effect-Induced 0−π Transitions in Ballistic Dirac Semimetal Josephson Junctions. Physical Review Letters, 123, 026802.
Linder, J., & Robinson, J. W. A. (2015). Superconducting spintronics. Nature Physics, 11, 307–315.
Pfeiffer, J., Kemmler, M., Koelle, D., Kleiner, R., Goldobin, E., Weides, M., … Ustinov, A. V. (2008). Static and dynamic properties of 0, π, and 0−π ferromagnetic Josephson tunnel junctions. Physical Review B, 77, 214506.
Radovic, Z., Lazarides, N., & Flytzanis, N. (2003). Josephson effect in double-barrier superconductor-ferromagnet junctions. Physical Review B, 68, 014501.
Ryzaznov, V. V., Oboznov, V. A., Rusanov, A. Y., Verennikov, A. V., Golubov, A. A., & Aarts, J. (2001). Coupling of Two Superconductors through a Ferromagnet: Evidence for a π Junction. Physical Review Letters, 86, 2427.
Satchell, N., Shepley, P. M., Algarni, M., Vaughan, M., Darwin, E., Ali, M., … Burnell, G. (2020). Spin-valve Josephson junctions with perpendicular magnetic anisotropy for cryogenic memory. Applied Physics Letters , 116, 022601.

Section
Research Articles

##plugins.themes.bootstrap3.article.details##

How to Cite
CHOOPAN, Wachiraporn. Exchange-field-controllable 0-π transition in asymmetric Josephson spin-valve heterostructure. Naresuan University Journal: Science and Technology (NUJST), [S.l.], v. 29, n. 2, p. 96-105, nov. 2020. ISSN 2539-553X. Available at: <https://www.journal.nu.ac.th/NUJST/article/view/Vol-29-No-2-2021-96-105>. Date accessed: 20 apr. 2024. doi: https://doi.org/10.14456/nujst.2021.20.