An Efficient Synthesis of Imidazo[1,2-a]pyridines

##plugins.themes.bootstrap3.article.main##

Piyawat Paengphua Uthai Wichai Sirirat Chancharunee

Abstract

     Imidazo[1,2-a]pyridines are useful building blocks for a number of biologically and pharmaceutically valuable compounds. Its synthetic method started from the reaction of 2-aminopyridines with acetophenones. However, the existing synthetic methods have drawbacks such as relatively high reaction temperatures, long reaction times and the difficult post-treatment. In this article, an improved synthetic method with high yield and simple steps for the synthesis of imidazo[1,2-a]pyridines was reported. It is an improved method that CsF-Celite was used in post-treatment, which enhanced the total yield, and the operations were effectually simplified by the one-pot method. Moreover, CsF-Celite can be recovered for subsequent reactions and reused without any loss of efficiency.


Keywords: Celite, Cesium Fluoride, One-pot synthesis

References

Ando, T., & Yamawaki, J. (1979). Potassium Fluoride on celit. A versatile reagent for C-, N-, O-, and S-alkylations. Chemistry Letters, 8(1), 45-46. doi:10.1246/cl.1979.45
Bagdi, A. K., Rahman, M., Santra, S., Majee, A., & Hajra, A. (2013). Copper-catalyzed synthesis of imidazo[1,2-a]pyridines through tandem imine Formation-Oxidative cyclization under ambient air: One-step synthesis of zolimidine on a Gram-Scale. Advanced Synthesis & Catalysis, 355(9), 1741-1747. doi:10.1002/adsc.201300298
Bloch, R., & Orvane, P. (1981). An improved synthesis of 2,2-dialkyl-1,3-indanediones. Synthetic Communications, 11(11), 913-915. doi:10.1080/00397918108065747
Byth, K. F., Geh, C., Forder, C. L., Oakes, S. E., & Thomas, A. P. (2006). The cellular phenotype of AZ703, a novel selective imidazo[1,2-a]pyridine cyclin-dependent kinase inhibitor. Molecular Cancer Therapeutics, 5(3), 655-664. doi:10.1158/1535-7163.mct-05-0205
Cao, H., Liu, X., Liao, J., Huang, J., Qiu, H., Chen, Q., & Chen, Y. (2014). Transition metal-mediated C═O and C═C bond-forming reactions: A regioselective strategy for the synthesis of imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrazines. The Journal of Organic Chemistry, 79(22), 11209-11214. doi:10.1021/jo501671x
Chancharunee, S., Pinhom, P., Pohmakotr, M., & Perlmutter, P. (2009). One-pot synthesis of 3,4-dihydropyrimidine-2-(1H)-ones using CsF–Celite as catalyst. Synthetic Communications, 39(5), 880-886. doi:10.1080/00397910802439175
Chandra Mohan, D., Reddy Donthiri, R., Nageswara Rao, S., & Adimurthy, S. (2013). Copper(I) iodide-catalysed aerobic oxidative synthesis of imidazo[1,2-a]pyridines from 2-aminopyridines and methyl ketones. Advanced Synthesis & Catalysis, 355(11-12), 2217-2221. doi:10.1002/adsc.201300456
Chioua, M., Soriano, E., Infantes, L., Jimeno, M. L., Marco-Contelles, J., & Samadi, A. (2013). Silver-catalyzed cyclization of N-(prop-2-yn-1-yl)pyridin-2-amines. European Journal of Organic Chemistry, 2013(1), 35-39. doi:10.1002/ejoc.201201258
Clark, J. H. (1980). Fluoride ion as a base in organic synthesis. Chemical Reviews, 80(5), 429-452. doi: 10.1021/cr60327a004
Donohoe, T. J., Kabeshov, M. A., Rathi, A. H., & Smith, I. E. D. (2012). Direct preparation of thiazoles, imidazoles, imidazopyridines and thiazolidines from alkenes. Organic & Biomolecular Chemistry, 10(5), 1093-1101. doi:10.1039/c1ob06587d
Gudmundsson, K. S., Williams, J. D., Drach, J. C., & Townsend, L. B. (2003). Synthesis and antiviral activity of novel erythrofuranosyl imidazo[1,2-a]pyridine C-nucleosides constructed via palladium coupling of iodoimidazo[1,2-a]pyridines and dihydrofuran. Journal of Medicinal Chemistry, 46(8), 1449-1455. doi:10.1021/jm020339r
Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., & Chapat, J.-P. (1998). Synthesis of imidazo[1,2-a]pyridines as antiviral agents. Journal of Medicinal Chemistry, 41(25), 5108-5112. doi:10.1021/jm981051y
Hayakawa, M., Kaizawa, H., Kawaguchi, K.-i., Ishikawa, N., Koizumi, T., Ohishi, & T., Workman, P. (2007). Synthesis and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel PI3 kinase p110α inhibitors. Bioorganic & Medicinal Chemistry, 15(1), 403-412. doi:10.1016/j.bmc.2006. 09.047
Hayat, S., Atta ur, R., Iqbal Choudhary, M., Khan, K. M., Schumann, W., & Bayer, E. (2001). N-Alkylation of anilines, carboxamides and several nitrogen heterocycles using CsF–Celite/alkyl halides/CH3CN combination. Tetrahedron, 57(50), 9951-9957. doi:10.1016/S0040-4020(01) 00989-9
Hieke, M., Rödl, C. B., Wisniewska, J. M., la Buscató, E., Stark, H., Schubert-Zsilavecz, M., & Proschak, E. (2012). SAR-study on a new class of imidazo[1,2-a]pyridine-based inhibitors of 5-lipoxygenase. Bioorganic & Medicinal Chemistry Letters, 22(5), 1969-1975. doi:10.1016/j.bmcl. 2012.01.038
Hodgkiss, R. J., Middleton, R. W., Parrick, J., Rami, H. K., Wardman, P., & Wilson, G. D. (1992). Bioreductive fluorescent markers for hypoxic cells: a study of 2-nitroimidazoles with 1-substituents containing fluorescent, bridgehead-nitrogen, bicyclic systems. Journal of Medicinal Chemistry, 35(10), 1920-1926. doi: 10.1021/jm00088a030
Jenkinson, S., Thomson, M., McCoy, D., Edelstein, M., Danehower, S., Lawrence, W., Gudmundsson, K. (2010). Blockade of X4-tropic HIV-1 cellular entry by GSK812397, a potent noncompetitive CXCR4 receptor antagonist. Antimicrobial Agents and Chemotherapy, 54(2), 817-824. doi:10. 1128/aac.01293-09
Karade, N. N., Kondre, J. M., Gampawar, S. V., & Shinde, S. V. (2009). Synthesis of 2,5-disubstituted 1,3,4-oxadiazine and 1,3,4-thiadiazine from substituted acetophenones and acid hydrazides using [hydroxyl(tosyloxy)iodo]benzene. Synthetic Communications, 39(13), 2279-2287. doi:10.1080/ 00397910802654716
Kielesinski, L., Tasior, M., & Gryko, D. T. (2015). Polycyclic imidazo[1,2-a]pyridine analogs - synthesis via oxidative intramolecular C-H amination and optical properties. Organic Chemistry Frontiers, 2(1), 21-28. doi: 10.1039/c4qo00248b
Lee, J. C., & Choi, Y. (1998). An improved method for preparation of carboxylic esters using CsF-Celite/alkyl halide/CH3CN Combination. Synthetic Communications, 28(11), 2021-2026. doi: 10.1080/00397919808007177
Lhassani, M., Chavignon, O., Chezal, J.-M., Teulade, J.-C., Chapat, J.-P., Snoeck, R., & Gueiffier, A. (1999). Synthesis and antiviral activity of imidazo[1,2-a]pyridines. European Journal of Medicinal Chemistry, 34(3), 271-274. doi:10.1016/S0223-5234(99)80061-0
Mali, R. S., & Kulkarni-Joshi, P. (1999). Synthesis of 6-prenylpyranoflavanones : Total synthesis of (±)-maxima flavanone A. Indian Journal of Chemistry -Section B, 38, 596. Retrieved from http://nopr. niscair.res.in/handle/123456789/16446
Marcinkowska, M., Kołaczkowski, M., Kamiński, K., Bucki, A., Pawłowski, M., Siwek, A., & Bienkowski, P. (2016). Design, synthesis, and biological evaluation of fluorinated imidazo[1,2-a]pyridine derivatives with potential antipsychotic activity. European Journal of Medicinal Chemistry, 124 (Supplement C), 456-467. doi:10.1016/j.ejmech.2016.08.059
Meng, X., Wang, Y., Yu, C., & Zhao, P. (2014). Heterogeneously copper-catalyzed oxidative synthesis of imidazo[1,2-a]pyridines using 2-aminopyridines and ketones under ligand- and additive-free conditions. [10.1039/C4RA03299C]. RSC Advances, 4(52), 27301-27307. doi:10.1039/c4ra 03299c
Mohammed Khan, K., Hayat, S., Zia, U., Atta ur, R., Iqbal Choudhary, M., Maharvi, G. M., & Bayer, E. (2003). An alternative method for the synthesis of γ-lactones by using cesium fluoride-celite/acetonitrile combination. Synthetic Communications, 33(19), 3435-3453. doi:10.1081/scc-120024003
Monir, K., Bagdi, A. K., Ghosh, M., & Hajra, A. (2014). Unprecedented Catalytic Activity of Fe(NO3)3·9H2O: Regioselective synthesis of 2-nitroimidazopyridines via oxidative amination. Organic Letters, 16(17), 4630-4633. doi:10.1021/ol502218u
Mukaiyama, T., Pai, F.-C., Onaka, M., & Narasaka, K. (1980). A useful method for selective acylation of alcohols using 2,2′-bipyridyl-6-yl carboxylate and cesium fluoride. Chemistry Letters, 9(5), 563-566. doi:10.1246/cl.1980.563
Oaksmith, J. M., & Ganem, B. (2009). Synthesis of a COMC–estradiol conjugate for targeted, tissue-selective cancer chemotherapy. Tetrahedron Letters, 50(26), 3497-3498. doi:10.1016/j.tetlet. 2009.03.083
Paengphua, P., & Chancharunee, S. (2018). Facile synthesis of imidazo[1,2-a]pyridines promoted by room-temperature ionic liquids under ultrasound irradiation. Monatshefte für Chemie - Chemical Monthly, 149(10), 1835-1840. doi:10.1007/s00706-018-2238-3
Patil, S. V., Gaikwad, N. D., & Bobade, V. D. A simple and efficient synthesis of imidazolo[1,2-a]pyridines using MgO in aqueous medium. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2012.04.017
Polshettiwar, V., & Kaushik, M. P. (2005). Microwave enhanced chemistry of CsF–Celite: an efficient catalyst for the synthesis of esters, ethers and their thio-analogues. Catalysis Communications, 6(3), 191-194. doi:10.1016/j.catcom.2004.12.007
Saldabol, N. O., & Giller, S. A. (1976). Synthesis of imidazo[1,2- a] pyridines directly from methyl or methylene ketones. iodination of imidazo[1,2-a] pyridines. Chemistry of Heterocyclic Compounds, 12(10), 1155-1162. doi:10.1007/bf00945605
Starrett, J. E., Montzka, T. A., Crosswell, A. R., & Cavanagh, R. L. (1989). Synthesis and biological activity of 3-substituted imidazo[1,2-a]pyridines as antiulcer agents. Journal of Medicinal Chemistry, 32(9), 2204-2210. doi:10.1021/jm00129a028
Stasyuk, A. J., Banasiewicz, M., Cyrański, M. K., & Gryko, D. T. (2012). Imidazo[1,2-a]pyridines susceptible to excited state intramolecular proton transfer: One-pot synthesis via an ortoleva–king reaction. The Journal of Organic Chemistry, 77(13), 5552-5558. doi:10.1021/jo300643w
Wang, H., Wang, Y., Liang, D., Liu, L., Zhang, J., & Zhu, Q. (2011). Copper-catalyzed intramolecular dehydrogenative aminooxygenation: Direct access to formyl-substituted aromatic N-heterocycles. Angewandte Chemie International Edition, 50(25), 5678-5681. doi:10.1002/anie.201100362
Yousefi, B. H., Manook, A., von Reutern, B., Schwaiger, M., Drzezga, A., Wester, H.-J., & Henriksen, G. (2012). Development of an improved radioiodinated 2-phenylimidazo[1,2-a]pyridine for non-invasive imaging of amyloid plaques. MedChemComm, 3(7), 775-779. doi:10.1039/c2md20115a
Zeng, J., Tan, Y. J., Leow, M. L., & Liu, X.-W. (2012). Copper(II)/Iron(III) Co-catalyzed Intermolecular Diamination of Alkynes: Facile Synthesis of Imidazopyridines. Organic Letters, 14(17), 4386-4389. doi:10.1021/ol301858j
Zhuang, Z.-P., Kung, M.-P., Wilson, A., Lee, C.-W., Plössl, K., Hou, C., & Kung, H. F. (2003). Structure−Activity Relationship of Imidazo[1,2-a]pyridines as Ligands for Detecting β-Amyloid Plaques in the Brain. Journal of Medicinal Chemistry, 46(2), 237-243. doi:10.1021/jm020351j

Section
Research Articles

##plugins.themes.bootstrap3.article.details##

How to Cite
PAENGPHUA, Piyawat; WICHAI, Uthai; CHANCHARUNEE, Sirirat. An Efficient Synthesis of Imidazo[1,2-a]pyridines. Naresuan University Journal: Science and Technology (NUJST), [S.l.], v. 27, n. 3, p. 43-54, july 2019. ISSN 2539-553X. Available at: <http://www.journal.nu.ac.th/NUJST/article/view/Vol-27-No-3-2019-43-54>. Date accessed: 21 oct. 2019. doi: https://doi.org/10.14456/nujst.2019.25.