Do Environmental Factors Influence the Distributions and Diversity of Tropical Macroinvertebrate Assemblages?: A Case Study of Mae Taeng River Basin, Northern Thailand


Rungnapa Tagun Tatporn Kunpradid


     Biodiversity loss caused by environmental changes has been increased year by year. The aquatic ecosystems have been impacted as habitats are modified, most likely by human activities. Few studies have examined how biological assemblages at different spatial scales are determined by environmental gradients. We aim to understand the influence of environmental factors on the distribution and diversity of macroinvertebrates in Northern Thailand. A total of 21,391 individuals belonging to 79 families in 15 orders were identified. The order Diptera is one of the most abundant taxa in this study (family Chironomidae). The cluster analysis of macroinvertebrates and environmental factors clearly divides the areas into two groups of disturbed (downstream) and undisturbed (headstream) stations. CCA results revealed that the turbidity, conductivity and BOD are the most important factors that could influence macroinvertebrate assemblages in this study. The results also provided the basic information about the ecological status as monitored by the distribution of organisms in aquatic systems. However, it is necessary to increase data reliability by continuing to monitor other biological communities in the long-term in order to define adequate strategies for diagnosing the integrity of stream ecosystems.

Keywords: Macroinvertebrate diversity; Environmental factors; Spatial distribution


Acosta, R., & Prat, N. (2010). Chironomid assemblages in high altitude streams of the Andean region of Peru. Fundamental and Applied Limnology, 177(1), 57-79. doi:10.1127/1863-9135/2010/0177-0057
Amani, H., Yaghoobi-Ershadi, M. R., & Kassiri, H. (2014). The ecology and larval habitats characteristics of anopheline mosquitoes (Diptera: Culicidae) in Aligudarz County (Luristan province, western Iran). Asian Pacific Journal of Tropical Biomedicine, 4, S233-S241. APJTB.4.2014C186
Arva, D., Specziar, A., Eros, T., & Toth, M. (2015). Effects of habitat types and within lake environmental gradients on the diversity of chironomid assemblages. Limnologica, 53, 26-34. 1016/ j.limno. 2015.05.004
Aschonitis, V. G., Feld, C. K., Castaldelli, G., Turin, P., Visona, E., & Fano, E. A. (2016). Environmental stressor gradients hierarchically regulate macrozoobenthic community turnover in lotic systems of Northern Italy. Hydrobiologia, 765(1), 131-147.
Beauger, A., Delcoigne, A., Voldoire, O., Serieyssol, K., & Peiry, J. L. (2015). Distribution of diatom, macrophyte and benthic macroinvertebrate communities related to spatial and environmental characteristics: the example of a cut-off meander of the River Allier (France). Cryptogamie Algologie, 36(3), 323-355.
Blakely, T. J., Eikaas, H. S., & Harding, J. S. (2014). The Singscore: a macroinvertebrate biotic index for assessing the health of Singapore's streams and canals. Raffles Bulletin of Zoology, 62, 540-548.
Cai, Y. J., Zhang, Y., Wu, Z. S., Chen, Y. W., Xu, J., & Gong, Z. J. (2017). Composition, diversity, and environmental correlates of benthic macroinvertebrate communities in the five largest freshwater lakes of China. Hydrobiologia, 788(1), 85-98.
Cao, Y., Anthony W., & Williams, W. P. (1997). A comparison of clustering methods for river benthic community analysis. Hydrobiologia, 347(1), 24-40.
Clews, E., Low, E. W., Belle, C. C., Todd, P. A., Eikaas, H. S., & Ng, P. K. L. (2014). A pilot macroinvertebrate index of the water quality of Singapore's reservoirs. Ecological Indicators, 38, 90-103.
Culp, J. M., & Scrimgeour, G. J. (1993). Size-Dependent Diel Foraging Periodicity of a Mayfly Grazer in Streams with and without Fish. Oikos, 68(2), 242-250.
Cyrino Zequi, J. A., Dos Santos, F. P., & Lopes, J. (2014). Control of Culex quinquefasciatus and Cx. saltanensis (Diptera: Culicidae) with Bacillus thuringiensis israelensis in wastewater treatment lagoons. Revista Colombiana De Entomologia, 40, 98-103.
Czerniawska-Kusza, I. (2005). Comparing modified biological monitoring working party score system and several biological indices based on macroinvertebrates for water-quality assessment. Limnologica - Ecology and Management of Inland Waters, 35(3), 169-176. 05.003
de Snoo, G. R., & de Wit, P. J. (1998). Buffer Zones for Reducing Pesticide Drift to Ditches and Risks to Aquatic Organisms. Ecotoxicology and Environmental Safety, 41(1), 112-118. 1006/eesa.1998.1678
Dida, G.O., Gelder, F. B., Anyona, D. N., Abuom, P. O., Onyuka, J. O., Matano, A.-S., . . . Ofulla, A. V. O.(2015). Presence and distribution of mosquito larvae predators and factors influencing their abundance along the Mara River, Kenya and Tanzania. SpringerPlus, 4, 136.
Dudgeon, D. (1999). Tropical Asian streams. Zoobenthos, ecology and conservation. Hong Kong: Hong Kong University Press.
Fu, L., Jiang, Y., Ding, J., Liu, Q., Peng, Q.-Z., & Kang, M.-Y. (2016). Impacts of land use and environmental factors on macroinvertebrate functional feeding groups in the Dongjiang River basin, southeast China. Journal of Freshwater Ecology, 31(1), 21-35. 02705060.2015.1017847
Giorgio, A., De Bonis, S., & Guida, M. (2016). Macroinvertebrate and diatom communities as indicators for the biological assessment of river Picentino (Campania, Italy). Ecological Indicators, 64, 85-91.
Greathouse, E. A., & Pringle, C. M. (2006). Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream. Canadian Journal of Fisheries and Aquatic Sciences, 63(1), 134-152.
Harrington, R. A., Poff, N. L., & Kondratieff, B. C. (2016). Aquatic insect -diversity is not dependent on elevation in Southern Rocky Mountain streams. Freshwater Biology, 61(2), 195-205. http://dx.doi. org/10.1111/fwb.12693
Ilg, C., & Castella, E. (2006). Patterns of macroinvertebrate traits along three glacial stream continuums. Freshwater Biology, 51(5), 840-853.
Jonsson, M., Burrows, R. M., Lidman, J., Faltstrom, E., Laudon, H., & Sponseller, R. A. (2017). Land use influences macroinvertebrate community composition in boreal headwaters through altered stream conditions. Ambio, 46(3), 311-323.
Jun, Y. C., Kim, N. Y., Kim, S. H., Park, Y. S., Kong, D. S., & Hwang, S. J. (2016). Spatial Distribution of Benthic Macroinvertebrate Assemblages in Relation to Environmental Variables in Korean Nationwide Streams. Water, 8(1).
Kasangaki, A., Chapman, L. J., & Balirwa, J. (2008). Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. Freshwater Biology, 53(4), 681-697.
Li, D., Erickson, R. A., Tang, S., Zhang, Y., Niu, Z. C., Liu, H. L., & Yu, H. X. (2016). Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China. Ecological Indicators, 61, 179-187.
Mc Conigley, C., Lally, H., Little, D., O'Dea, P., & Kelly-Quinn, M. (2017). The influence of aquatic buffer zone vegetation on river macroinvertebrate communities. Forest Ecology and Management, 400, 621-630.
Merritt, R. W., & Cummins, K. W. (1996). An Introduction to the Aquatic Insects of North America. Third edition. (Third ed.). Dubuque: Kendall/Hunt Publishing Company.
Mustow, S. E. (2002). Biological monitoring of rivers in Thailand: use and adaptation of the BMWP score. Hydrobiologia, 479(1), 191-229. 10.1023/A:1021055926316
Navarro, J. C., Del Ventura, F., Zorrilla, A., & Liria, J. (2010). Highest mosquito records (Diptera: Culicidae) in Venezuela. Revista De Biologia Tropical, 58(1), 245-254.
Neff, M. R., & Jackson, D. A. (2011). Effects of broad-scale geological changes on patterns in macroinvertebrate assemblages. Journal of the North American Benthological Society, 30(2), 459-473.
Prommi, T., & Payakka, A. (2015). Aquatic Insect Biodiversity and Water Quality Parameters of Streams in Northern Thailand. Sains Malaysiana, 44(5), 707-717.
Resh, V. H., & Rosenberg, D. M. (1984). The Ecology of Aquatic Insects. New York, NY: Praeger.
Riens, J. R., Schwarz, M. S., Mustafa, F., & Hoback, W. W. (2013). Aquatic Macroinvertebrate Communities and Water Quality at Buffered and Non-Buffered Wetland Sites on Federal Waterfowl Production Areas in the Rainwater Basin, Nebraska. Wetlands, 33(6), 1025-1036. s13157-013-0460-7
Sharifinia, M., Mahmoudifard, A., Namin, J. I., Ramezanpour, Z., & Yap, C. K. (2016). Pollution evaluation in the Shahrood River: Do physico-chemical and macroinvertebrate-based indices indicate same responses to anthropogenic activities? Chemosphere, 159, 584-594. chemosphere.2016.06. 064
Silva, D. R. O., Ligeiro, R., Hughes, R. M., & Callisto, M. (2014). Visually determined stream mesohabitats influence benthic macroinvertebrate assessments in headwater streams. Environmental Monitoring and Assessment, 186(9), 5479-5488.
Stauffer-Olsen, N. J., O'Grady, P. M., & Resh, V. H. (2017). Temporal patterns of genetic diversity in Baetis tricaudatus (Ephemeroptera:Baetidae) from the Russian River, northern California. Freshwater Science, 36(2), 351-363.
Tagun, R., & Boxall, A. B. A. (2018). The Response of Lemna minor to Mixtures of Pesticides That Are Commonly Used in Thailand. Bulletin of Environmental Contamination and Toxicology, 100(4), 516-523. doi:10.1007/s00128-018-2291-y
Thanee, I., & Phalaraksh, C. (2012). Diversity of Aquatic Insects and Their Functional Feeding Group from Anthropogenically Disturbed Streams in Mae Sot District, Tak Province, Thailand. Chiang Mai Journal of Science, 39(3), 399-409.
Tomanova, S., Goitia, E., & Helesic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556, 251-264. s10750-005-1255-5
Von Bertrab, M. G., Krein, A., Stendera, S., Thielen, F., & Hering, D. (2013). Is fine sediment deposition a main driver for the composition of benthic macroinvertebrate assemblages? Ecological Indicators, 24, 589-598.
Wang, B. X., Liu, D. X., Liu, S. R., Zhang, Y., Lu, D. Q., & Wang, L. Z. (2012). Impacts of urbanization on stream habitats and macroinvertebrate communities in the tributaries of Qiangtang River, China. Hydrobiologia, 680(1), 39-51. doi:10.1007/s10750-011-0899-6
Withers, P. J. A., & Hodgkinson, R. A. (2009). The effect of farming practices on phosphorus transfer to a headwater stream in England. Agriculture Ecosystems & Environment, 131(3-4), 347-355.
Xiong, W., Li, J., Chen, Y. Y., Shan, B. Q., Wang, W. M., & Zhan, A. B. (2016). Determinants of community structure of zooplankton in heavily polluted river ecosystems. Scientific Reports, 6. http:// /10.1038/srep22043

Yee, D. A., Kaufman, M. G., & Juliano, S. A. (2007). The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores. Journal of Animal Ecology, 76(6), 1105-1115.
Zhang, C. F., Li, S., Qi, J. Y., Xing, Z. S., & Meng, F. R. (2017). Assessing impacts of riparian buffer zones on sediment and nutrient loadings into streams at watershed scale using an integrated REMM-SWAT model. Hydrological Processes, 31(4), 916-924.

Research Articles


How to Cite
TAGUN, Rungnapa; KUNPRADID, Tatporn. Do Environmental Factors Influence the Distributions and Diversity of Tropical Macroinvertebrate Assemblages?: A Case Study of Mae Taeng River Basin, Northern Thailand. Naresuan University Journal: Science and Technology (NUJST), [S.l.], v. 27, n. 3, p. 20-34, july 2019. ISSN 2539-553X. Available at: <>. Date accessed: 21 oct. 2019. doi: