Aboveground biomass in tropical dry forest at Rote Ndao Regency, East Nusa Tenggara Province, Indonesia

##plugins.themes.bootstrap3.article.main##

Aah Ahmad Almulqu Jaruntorn Boonyanuphap

Abstract

     The study of biomass storage in trees in the tropical dry forest at Rote Ndao Regency, East Nusa Tenggara, Indonesia  is conducted. The biomass of standing trees is estimated by non destructive method. The tree height and diameter is taken into consideration for the measurement of biomass and carbon content. The height of tree is measured by using a theoretical model and concept is used for actual measurement of 7 different tree species (Schleichera oleosa, Dryobalanops aromatic, Mangifera indica, Cordirchotoma torsi, Tamarindus indica, Ficus benjamina and Vitex parviflora) having diameter at breast height (DBH) ≥ 20 cm. The total of carbon storage has been determined and compared with allometric equation. At the time of estimation of organic carbon storage by allometric equation, the study revealed that allometric equation  based on two approach, namely only use DBH and use DBH. Based on results of research, show that the total of carbon stock, respectively, were 8,600.22 ton/ha ton/ha  in Schleichera oleosa,  followed by Dryobalanops aromatica (3491.438 ton/ha), Mangifera indica (2997.458 ton/ha), Vitex parviflora (2147.406 ton/ha), Tamarindus indica (545.116 ton/ha), Ficus benjamina (387.292 ton/ha) and Cordirchotoma torsi (288.176 ton/ha).

References

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., & Lewis, S. L. (2004). Variation in wood density determines spatial patterns inAmazonian forest biomass. Global Change Biology, 10(5), 545-562.

Brown, S., Gillespie, A. J., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest science, 35(4), 881-902.

Burrows, W. H., Hoffmann, M. B., Compton, J. F., Back, P. V., & Tait, L. J. (2000). Allometric relationships and community biomass estimates for some dominant eucalypts in Central Queensland woodlands. Australian Journal of Botany, 48(6), 707-714.

Colgan, M. S., Swemmer, T., & Asner, G. P. (2014). Structural relationships between form factor, wood density, and biomass in African savanna woodlands. Trees, 28(1), 91-102.

Crow, T. R. (1983). Comparing biomass regressions by site and stand age for red maple. Canadian Journal of Forest Research, 13(2), 283-288.

Gan, K.S., Choo, T., & Lim, S.C. (1999). Timber notes - medium hardwoods I (Kapur, Kasai, Kelat, Keledang, Kempas). Timber Technology Bulletin No. 11. Timber Technology Centre (TTC), Kuala Lumpur: Forest Research Institute Malaysia.

Gómez-García, E., Crecente-Campo, F., Tobin, B., Hawkins, M., Nieuwenhuis, M., & Diéguez-Aranda, U. (2013). A dynamic volume and biomass growth model system for even-aged downy birch stands in south-western Europe. Forestry, 87(1), 165-176.

Grigal, D. F., & Kernik, L. K. (1984). Generality of black spruce biomass estimation equations. Canadian Journal of Forest Research, 14(3), 468-470.

Gurdak, D. J., Aragão, L. E., Rozas-Dávila, A., Huasco, W. H., Cabrera, K. G., Doughty, C. E., ... & Malhi, Y. (2014). Assessing above-ground woody debris dynamics along a gradient of elevation in Amazonian cloud forests in Peru: balancing above-ground inputs and respiration outputs. Plant Ecology & Diversity, 7(1-2), 143-160.

Huston, M. A., & Marland, G. (2003). Carbon management and biodiversity. Journal of environmental Management, 67(1), 77-86.

Istomo. (1994). The relationship between composition, structure and ramin (Gonystylus bancanus Miq. Kurz) Diversity to properties of peat soil (the cases in PT. Perhutani III Kalimantan Selatan). (PhD. Thesis). Bogor Agricultural University, Bogor, Indonesia. (In Indonesia).

Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species. Forest Science, 49(1), 12-35.

Ketterings, Q. M., Coe, R., van Noordwijk, M., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and management, 146(1), 199-209.

Kristinawati, H., Adinugroho, W.C., & Imanuddin, R. (2012). Monograf: Model-model alometric for tree biomass estimation in land use type of Indonesia forest ecosystem. Bogor, Indonesia: The Centre of Research and Development for Conservation and Rehabilitation, Forest Research and Development Agency. Ministry of Forestry. (In Indonesia).

Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., ... & Higuchi, N. (2006). The regional variation of aboveground live biomass in old‐growth Amazonian forests. Global Change Biology, 12(7), 1107-1138.

Mueller-Dombois, D., & Ellenberg, H., (1974). Aims and method of vegetation. New York: Wiley International Ed. John Wiley & Sons.

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., Anthony, S. (2009). Agroforestree database: a tree reference and selection guide version 4.0. Kenya: World Agroforestry Centre.

Ostadhashemi, R., Rostami Shahraji, T., Roehle, H., & Mohammadi Limaei, S. (2014). Estimation of biomass and carbon storage of tree plantations in northern Iran. Journal of forest science, 60(9), 363-371.

Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, G. G., Pierce, K. B., & Ohmann, J. L. (2010). Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114(5), 1053-1068.

Ribeiro, S. C., Fehrmann, L., Soares, C. P. B., Jacovine, L. A. G., Kleinn, C., & de Oliveira Gaspar, R. (2011). Above-and belowground biomass in a Brazilian Cerrado. Forest Ecology and Management, 262(3), 491-499.

Salazar, S., Sanchez, L. E., Galindo, P., & Santa-Regina, I. (2010). Above-ground tree biomass equations and nutrient pools for a paraclimax chestnut stand and for a climax oak stand in the Sierra de Francia Mountains, Salamanca, Spain. Scientific Research and Essays, 5(11), 1294-1301.

Sarmiento, G., Pinillos, M., & Garay, I. (2005). Biomass variability in tropical American lowland rainforests. Ecotropicos, 18(1), 1-20.

Soerianegara, I., & Indrawan, A., (1988). Forest ecology. Faculty of Forestry, Bogor Agricultural University, Bogor, Indonesia. (In Indonesia)

Suhendang, E., (1985). The study of tree species structure model in low land rain forest at Bengkunat, Lampung Province. (PhD. Thesis). Bogor Agricultural University, Bogor, Indonesia. (In Indonesia).

Suita, L., (2012). Kesambi (Schleichera oleosa MERR.). Forest Tree Seed Technology Research and Development Center. Forest Research and Development Agency. Ministry of Forestry. (In Indonesia).
Tackenberg, O. (2007). A new method for non-destructive measurement of biomass, growth rates, vertical biomass distribution and dry matter content based on digital image analysis. Annals of botany, 99(4), 777-783.

Temesgen, H., Affleck, D., Poudel, K., Gray, A., & Sessions, J. (2015). A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research, 30(4), 326-335.

Tritton, L. M., & Hornbeck, J. W. (1982). Biomass equations for major tree species of the Northeast. Broomall : USDA Forest Service.

Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C. P., & Agrawal, R. K. (2011). Validation of QSAR models-strategies and importance. International Journal of Drug Design & Discovery, 2(3), 511-519.


Zeng, W. S. (2015). Integrated individual tree biomass simultaneous equations for two larch species in northeastern and northern China. Scandinavian journal of forest research, 30(7), 594-604.

Zhang, J. T., & Chen, T. (2007). Effects of mixed Hippophae rhamnoides on community and soil in planted forests in the Eastern Loess Plateau, China. ecological engineering, 31(2), 115-121.
Zianis, D. (2008). Predicting mean aboveground forest biomass and its associated variance. Forest Ecology and Management, 256(6), 1400-1407.

Zuo, S. Z., Ren, Y., Wang, X. K., Zhang, X. Q., & Luo, Y. J. (2014). Biomass estimation factors and their determinants of Cunninghamia lanceolata forests in China. Scientia Silvae Sinicae, 50(11), 1-12.

Keywords
tropical dry forest; biomass; total organic carbon; non destructive method; allometric equation
Section
Research Articles

##plugins.themes.bootstrap3.article.details##

How to Cite
ALMULQU, Aah Ahmad; BOONYANUPHAP, Jaruntorn. Aboveground biomass in tropical dry forest at Rote Ndao Regency, East Nusa Tenggara Province, Indonesia. Naresuan University Journal: Science and Technology (NUJST), [S.l.], v. 26, n. 1, p. 49-62, mar. 2018. ISSN 2539-553X. Available at: <http://www.journal.nu.ac.th/NUJST/article/view/1514>. Date accessed: 24 may 2018.